The physical mechanisms of hypersonic boundary layer transition induced by the roughness element are investigated by means of Direct Numerical Simulation (DNS) in terms of topological structure stability and boundary layer stability. Based on an analysis of the transition mechanism induced by roughness elements of different types, a new roughness element is designed. The new roughness element has the characteristics of small scale, low friction, low heat flux and easy to induce transition. The results show that all the base zones of the roughness elements of different types include a Saddle-Node-Saddle point (SNS) structure. Under the action of disturbance, the SNS structure forms into an unsteady and asymmetric oscillatory structure. In addition, comparisons are made between different types roughness (ramp and "gear" roughness), and transition mechanism of the different types roughness is analyzed, which supports design of hypersonic forced-transition device in the theory.
[1] VAN DRIEST E R, BLUMER C B. Boundary-layer transition at supersonic speeds-three dimensional roughness effects (spheres)[J]. Journal of the Aerospace Sciences, 1962, 29(8):909-916.[2] DANEHY P M, BATHEL B F, IVEY C B, et al.No PLIF study of hypersonic transition over a discrete hemispherical roughness element:AIAA-2009-0394[R]. Reston, VA:AIAA, 2009.[3] TIRTEY S C, CHAZOT O, WALPOT L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011, 50(2):407-418.[4] WHEATON B M, SCHNEIDER S P. Roughness-induced instability in a hypersonic laminar boundary layer[J]. AIAA Journal, 2012, 50(6):1245-1256.[5] BARTKOWICZ M D, SUBBAREDDY P K, CANDLEER G V. Numerical simulations of roughness induced instability in the Purdue Mach 6 wind tunnel:AIAA-2010-4723[R]. Reston, VA:AIAA, 2010.[6] DUAN Z W, XIAO Z X, FU S. Direct numerical simulation of hypersonic transition induced by a cylindrical roughness element:AIAA-2013-3112[R]. Reston,VA:AIAA, 2013.[7] DUAN Z W, XIAO Z X, FU S. Direct numerical simulation of hypersonic transition induced by a ramp roughness element:AIAA-2014-0237[R]. Reston,VA:AIAA, 2014.[8] 段志伟, 肖志祥.粗糙元诱导的高超声速边界层转捩[J]. 航空学报, 2016, 37(8):2454-2463. DUAN Z W, XIAO Z X. Roughness element induced hypersonic boundary layer transition[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2454-2463(in Chinese).[9] 赵晓慧, 邓小兵, 毛枚良, 等. 高超声速进气道强制转捩流动的大涡模拟[J]. 航空学报, 2016, 37(8):2445-2453. ZHAO X H, DENG X B, MAO M L, et al. Large eddy simulation for forced transition flow at hypersonic inlet[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2445-2453(in Chinese).[10] KIMMEL R, ADAMCZAK D, GOSSE R, et al. Ground test and computation of boundary layer transition on the hypersonic international flight research and experimentation HIFiRE-5 vehicle:AFRL-RB-WP-TR-2011-3025[R]. White Paterson, OH:AFRL, 2011.[11] BERRY S A, DARYABEIGI K, WURSTER K, et al. Boundary layer transition on X-43A:AIAA-2008-3736[R]. Reston, VA:AIAA, 2008.[12] BORG M P. Laminar instability and transition on the X-51[D].West Lafayette, IN:Purdue University, 2009:21-31.[13] BERRY S A, AUSLENDER A H, DILLEY A D, et al. Hypersonic boundary-layer trip development for Hyper-X:AIAA-2000-4012[R]. Reston, VA:AIAA, 2000.[14] BERRY S, DARYABEIGI K, WURSTER K, et al. Boundary-layer transition on X-43A[J]. Journal of Spacecraft and Rockets, 2010, 47(6):922-934.[15] KIMMEL R L. Roughness considerations for the HIFiRE-1 vehicle:AIAA-2008-4293[R]. Reston,VA:AIAA, 2008.[16] 赵俊波, 沈清, 张红军, 等. 基于T-S波谐频共振的超燃进气道边界层转捩[J]. 航空动力学报, 2010, 25(11):2420-2424. ZHAO J B, SHEN Q, ZHANG H J, et al. Boundary transition research of scramjet inlet based on the Tollmien-Schlichting (T-S) wave syntony[J]. Journal of Aerospace Power, 2010, 25(11):2420-2424(in Chinese).[17] 张红军, 沈清. 新型高超声速进气道边界层人工转捩方法研究[J]. 实验流体力学, 2016, 30(2):75-78. ZHANG H J, SHEN Q.A new method of artificial boundary layer transition for hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):75-78(in Chinese).[18] 赵慧勇, 周瑜, 倪鸿礼, 等. 高超声速进气道边界层强制转捩试验[J]. 实验流体力学, 2012, 26(1):1-6. ZHAO H Y, ZHOU Y, NI H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):1-6(in Chinese).[19] 沈清, 朱德华. 高超声速尾迹流场稳定性数值研究[J]. 力学学报, 2009, 41(1):1-7. SHEN Q, ZHU D H. Numerical study of the stability of hypersonic wake[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1):1-7(in Chinese).[20] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126:202-228.[21] 张涵信, 沈孟育. 计算流体力学——差分方法的原理和应用[M]. 北京:国防工业出版社, 2003:289-292. ZHANG H X, SHEN M Y. Computational fluid dynamics-Fundamentals and applications of finite difference methods[M]. Beijing:National Defence Industry Press, 2003:289-292(in Chinese).[22] JOEL E G, NICHOLAS J B, JONATHAN P. High fidelity computational study of the HIFiRE-1 boundary layer trip:AIAA-2014-0433[R]. Reston, VA:AIAA, 2014.[23] 朱德华, 袁湘江, 沈清, 等. 高超声速粗糙元诱导转捩的数值模拟及机理分析[J]. 力学学报, 2015, 47(3):381-388. ZHU D H, YUAN X J, SHEN Q, et al. Numerical simulation and mechanism analysis of hypersonic roughness induced transition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3):381-388(in Chinese).