过冷水撞击低温基底结冰是典型的动态过程,易形成气泡孔隙,这一孔隙结构是决定动态结冰热/力学特性的根本因素。针对动态结冰微观孔隙结构定量研究的不足,以风洞结冰显微图像为对象,采用前期提出的变分分割模型,建立了结冰图像孔隙提取方法;基于孔隙提取结果,系统分析不同结冰条件下的孔隙形态、孔径分布等相关结构特征,提出了孔隙类球形、孔径分布连续的结论,并建立了孔隙孔径分布函数,推导了其概率密度函数。结果表明,变分图像分割方法作为孔隙提取的手段具有适用性和优越性,所提孔隙结构相关定量结果与试验数据具有较高的吻合度,基于此开展动态结冰微观结构定量研究是可行的。
When super-cooled water droplets impinge a substrate, ice with air pores is formed dynamically. The porou structure is the main factor which influences the thermal and mechanical characteristics of ice. To give a quantitative study of the porous structure of dynamic ice, a pore extraction method is developed based on a variational segmentation model proposed earlier. The method is used to extract the micro image of the ice formed in the ice wind tunnel. The shape, the diameter distribution and other characteristics of the ice formed under different conditions are analyzed systematically. Quantitative study shows that the pore in the ice is sphere-like, and the diameter value is of continuous attribute. The probability density function for the pore diameter is deduced based on the distribution function of the pore diameter. It is clear that the variational segmentation model is feasible and advantageous for pore extraction. The quantitative results are highly consistent with experiment results, and the corresponding quantitative research on the micro-porous structure of dynamic ice can be carried out based on the method proposed.
[1] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of airspeed[J]. Journal of the Aeronautical Sciences, 1953, 20(1):29-42.[2] MYERS T G, CHARPIN J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47(25):5483-5500.[3] IKIADES A A, KONSTANTAKI M, CROSSLEY S D. Fiber optic sensors technology for air conformal ice detection[C]//Optical Technologies for Industrial, Environmental, and Biological Sensing. International Society for Optics and Photonics, 2004:357-368.[4] 尹胜生, 叶林, 陈斌, 等. 可识别冰型的光纤结冰传感器[J]. 仪表技术与传感器, 2012(5):9-12. YIN S S, YE L, CHEN B, et al. Fiber-optical icing sensor for detecting the icing type[J]. Instrument Technique and Sensor, 2012(5):9-12(in Chinese).[5] IVALL J, RENAULT-CRISPO J S, COULOMBE S, et al. Ice-dependent liquid-phase convective cells during the melting of frozen sessile droplets containing water and multiwall carbon nanotubes[J]. International Journal of Heat and Mass Transfer, 2016, 101:27-37.[6] KEITZL T, MELLADO J P, NOTZ D.Impact of thermally driven turbulence on the bottom melting of ice[J]. Journal of Physical Oceanography, 2016, 46(4):1171-1187.[7] YE Y, NING N, TIAN M, et al. Nucleation and growth of hexagonal ice by dynamical density functional theory[J]. Crystal Growth & Design, 2017, 17(1):100-105.[8] BLAKE J, THOMPSON D, RAPS D, et al. Simulating the freezing of supercooled water droplets impacting a cooled substrate[J]. AIAA Journal, 2015, 53(7):1725-1739.[9] LU Y, ZHANG X, CHEN M. Size effect on nucleation rate for homogeneous crystallization of nanoscale water[J]. The Journal of Physical Chemistry B, 2013, 117(35):10241.[10] COX S J, RAZA Z, KATHMANN S M, et al. The microscopic features of heterogeneous ice nucleation may affect the macroscopic morphology of atmospheric ice crystals[J]. Faraday Discussions, 2013, 167(1):389-403.[11] ZHANG X X, LU Y J, CHEN M. Crystallisation of ice in charged Pt nanochannel[J]. Molecular Physics, 2013, 111(24):3808-3814.[12] LUPI L, HUDAIT A, MOLINERO V. Heterogeneous nucleation of ice on carbon surfaces[J]. Journal of American Chemical Society, 2014, 136(8):3156-3164.[13] LEI G L, DONG W, ZHENG M, et al. Numerical investigation on heat transfer and melting process of ice with different porosities[J]. International Journal of Heat and Mass Transfer, 2017, 107:934-944.[14] 杜雁霞, 桂业伟, 柯鹏, 等. 飞机结冰冰型微结构特征的分形研究[J]. 航空动力学报, 2011, 26(5):997-1002. DU Y X, GUI Y W, KE P, et al. Investigation on the ice-type microstructure characteristics of aircraft icing based on the fractal theories[J]. Journal of Aerospace Power, 2011, 26(5):997-1002(in Chinese).[15] FRANK C. Reservoir formation damage:Fundamentals, modeling, assessment and mitigation[M]. 2nd ed. Burlington:Gulf Professional Publishing, 2007.[16] LEHMANN P, STAHLI M, PAPRITZ A. A fractal approach to model soil structure and to calculate thermal conductivity of soils[J]. Transport in Porous Media, 2003, 52(3):313-332.[17] OKABE H, BLUNT M J. Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics[J]. Water Resources Research, 2007, 43(12):W12S02.[18] LI W B, YI X, SONG S H. Convex background removed model for image segmentation using the split Bregman method[J]. Journal of Information and Computational Science, 2015, 12(17):6641-6652.[19] 李伟斌, 易贤, 杜雁霞, 等. 基于变分分割模型的结冰形测量方法[J]. 航空学报, 2017, 38(1):120167. LI W B, YI X, DU Y X, et al. A measurement approach for ice shape based on variational segmentation model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):120167(in Chinese).[20] BERTSEKAS D P. Constrained optimization and Lagrange multiplier methods[M]//Computer Science and Applied Mathematics. Boston:Academic Press, 1982:1.[21] OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces[M]. New York:Springer-Verlag, 2002:51-72.[22] 王东霞, 宋爱国. 基于三坐标测量机的圆度误差不确定度评估[J]. 东南大学学报(自然科学版), 2014, 44(5):952-956. WANG D X, SONG A G. Uncertainty assessment of circularity error based on coordinate measuring machine[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(5):952-956(in Chinese).