流体力学与飞行力学

自由活塞激波风洞的入射激波衰减

  • 朱浩 ,
  • 江海南 ,
  • 张冰冰
展开
  • 中国航天空气动力技术研究院, 北京 100074

收稿日期: 2017-04-17

  修回日期: 2017-07-20

  网络出版日期: 2017-07-20

基金资助

国家自然科学基金(11572303)

Attenuation of incident shock waves in free piston shock tunnels

  • ZHU Hao ,
  • JIANG Hainan ,
  • ZHANG Bingbing
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2017-04-17

  Revised date: 2017-07-20

  Online published: 2017-07-20

Supported by

National Natural Science Foundation of China (11572303)

摘要

自由活塞激波风洞产生的入射激波在行进过程中存在较大衰减,这种现象不仅降低了风洞喷管贮室的焓值、压力的量值和平稳性,而且也制约了风洞有效试验时间。针对自由活塞激波风洞结构特点,试图揭示入射激波衰减的主导原因。在忽略一些偶然性随机性因素后,重点对黏性衰减和反射膨胀波作用两个因素的影响进行了分析和比较。结果表明,在风洞主膜片打开时刻,活塞前脸与主膜片之间的短促距离,加剧了反射膨胀波的影响,在很多情况下,这是导致激波衰减的更为主要的因素。出于降低激波衰减和延长风洞有效试验时间的实际工程需要,提出了变截面活塞压缩器的设计构型。随后的理论研究显示,该构型能够实现活塞充分减速并达到安全速度,被压缩气体(驱动气体)能够形成平稳的压力/温度平台,满足激波管驱动需要。

本文引用格式

朱浩 , 江海南 , 张冰冰 . 自由活塞激波风洞的入射激波衰减[J]. 航空学报, 2017 , 38(12) : 121328 -121328 . DOI: 10.7527/S1000-6893.2017.121328

Abstract

Attenuation of incident shock waves in free piston shock tunnels is of great important, which not only reduces the enthalpy, pressure and steadiness, but also imposes constraints on valid testing time. In this study, an attempt of investigation of main reasons of attenuation of shock wave was carried out based on the structural features of free piston tunnels. After neglecting some random factors, two important factors of attenuation, viscosity of the boundary layer and the reflected expansion wave, were studied. The results show that the latter factor plays major role in free piston shock tunnels. When the main diaphragm ruptures, the front face of the piston is very close to the main diaphragm, which leads to reflected expansion wave to catch up with the interface or shock wave earlier. A new compression tube with an abrupt area change was proposed, which can delay the interaction between the reflected expansion wave and the interface (or shock wave). In the new compression tube, the steady pressure and temperature of driver gas could be formed in the end of the tube while the free piston decelerated to a safety speed.

参考文献

[1] GAI S L. Free piston shock tunnels:Developments and capabilities[J]. Progress in Aerospace Sciences, 1992, 29(1):1-41.[2] STALKER R J. A study of the free piston shock tunnel[J]. AIAA Journal, 1967, 5(12):2160-2165.[3] STALKER R J. Shock tunnel for real gas hypersonic:AGARD-CP-428[R]. Brussels:AGARD, 1987.[4] STALKER R J. Modern developments in hypersonic wind tunnels[J]. Aeronautical Journal, 2006, 110(1103):21-39.[5] STALKER R J, MORGAN R G. The University of Queensland free piston shock tunnel T-4:Initial operation and preliminary calibration[C]//4th National Space Engineering Symposium. Barton, ACT:Institute of Engineers, Australia, 1988:182-198.[6] HORNUNG H.Performance data of the new free-piston shock tunnel at GALCIT:AIAA-1992-3943[R]. Reston, VA:AIAA, 1992.[7] EITELBER G, MCINTYRE T J, BECK W H, et al. The high enthalpy shock tunnel in Göttingen:AIAA-1992-3942[R]. Reston, VA:AIAA, 1992.[8] EITELBERG G. First results of calibration and use of HEG:AIAA-1994-2525[R]. Reston, VA:AIAA, 1994.[9] ITOH K.Characteristics of the HIEST and its applicability for hypersonic aerothermodynamic and scramjet research[M]//Advanced Hypersonic Test Facilities. Reston, VA:AIAA, 2002:239-253.[10] MIRELS H. Attenuation in a shock tube due to unsteady-boundary-layer action:NACA TN 3278[R]. Washington, D.C.:NACA, 1956.[11] TRIMPI R L. Nonlinear theory for predicting the effects of unsteady laminar, turbulent, transitional boundary layers on the attenuation of shock wave in a shock tube:NASA TN 4347[R]. Washington, D. C.:NASA, 1958.[12] EMRICH R J, WHEELER D B. Wall effect in shock tube flow[J]. Physics of Fluids, 1958, 1(1):14-23.[13] SPENCE D A, WOODS D A. Boundary layer and combustion effects in shock tube flows[J]. Hypersonic Flows, 1960, 11(3):163-180.[14] ANDERSON G F, MURTHY V S. Attenuation of the shock in a shock tube due to effect of wall boundary layer:AIAA-1968-0053[R]. Reston, VA:AIAA, 1968.[15] MUYLAERT J, VOIRON R, SAGNIER G, et al.Review of the European hypersonic wind tunnel performance and simulation requirements[C]//Proceedings of the First European Symposium on Aerothermodynamics for Space Vehicles. 1991:559-574.[16] JACOBS P A. Quasi-one-dimensional modeling of free piston shock tunnel[J]. AIAA Journal, 1994, 32(1):137-145.[17] SRINIVASAN S, TANNEHILL J C. Simplified curve fits for the thermodynamic properties of equilibrium air:NASA-CR-178411[R].Washington, D. C.:NASA, 1987.[18] DOOLAN C J. Modeling mass entrainment in a quasi-one-dimensional shock tube code[J]. AIAA Journal, 1996, 34(6):1291-1293.[19] HORNUNG H G.The piston motion in a free piston driver for shock tubes and tunnels:GAL.CIT Rep. FM88-1[R]. Pasadena, CA:California Institute of Technology, 1988.[20] LABRACHERIE L, DUMITRESCU M P, BURTSCHELL Y, et al. On the compression process in a free-piston shock-tunnel[J]. Shock Waves, 1993, 3(1):19-23.
文章导航

/