电子电气工程与控制

直达与非直达环境中的多目标解耦直接定位方法

  • 尹洁昕 ,
  • 王鼎 ,
  • 吴瑛 ,
  • 刘瑞瑞
展开
  • 解放军信息工程大学 信息系统工程学院, 郑州 450001

收稿日期: 2017-04-20

  修回日期: 2017-07-18

  网络出版日期: 2017-07-18

基金资助

国家自然科学基金(61201381,61401513);中国博士后科学基金(2016M592989);信息工程大学优秀青年基金(2016603201);信息工程大学自主课题基金(2016600701)

A decoupled direct position determination algorithm for multiple targets in mixed LOS/NLOS environments

  • YIN Jiexin ,
  • WANG Ding ,
  • WU Ying ,
  • LIU Ruirui
Expand
  • Information System Engineering Institute, PLA Information Engineering University, Zhengzhou 450001, China

Received date: 2017-04-20

  Revised date: 2017-07-18

  Online published: 2017-07-18

Supported by

National Natural Science Foundation of China (61201381,61401513);China Postdoctoral Science Foundation (2016M592989);the Outstanding Youth Foundation of Information Engineering University (2016603201);the Self-Topic Foundation of Information Engineering University (2016600701)

摘要

针对直达(LOS)与非直达(NLOS)环境中的定位问题,提出了一种波形已知条件下的单阵地多目标直接定位(DPD)算法。该算法针对发射时间已知和未知两种情况,利用多径信号到达角度与时延关于障碍物(或反射体)、观测站与目标位置参数的数学关系,建立了三维目标位置的最大似然(ML)函数,无需估计测量参数,避免了传统两步定位方法所需的非直达径识别与数据关联。为了克服多目标定位中的高维非线性优化问题,该算法利用独立波形信息将多目标定位解耦为对各个目标单独求解。通过对目标函数有效近似,算法在发射时间已知和未知两种情况下均仅需三维网格搜索,比相应的两步定位方法具有更低的计算量。此外,基于多径定位场景,推导了发射时间已知和未知两种情况下的位置估计克拉美罗界(CRB)。仿真结果表明:算法的定位性能能够逼近相应的克拉美罗界,比传统两步定位方法和子空间直接定位算法具有更高的定位精度。

本文引用格式

尹洁昕 , 王鼎 , 吴瑛 , 刘瑞瑞 . 直达与非直达环境中的多目标解耦直接定位方法[J]. 航空学报, 2018 , 39(2) : 321338 -321338 . DOI: 10.7527/S1000-6893.2017.321338

Abstract

To realize localization in mixed Line-of-Sight and Non-Line-of-Sight (LOS/NLOS) environments with high precision, this paper proposes a Direct Position Determination (DPD) algorithm for multiple targets with known signal waveforms received by an antenna array. By relating the arrival angle and arrival time of the multipath signal to the positions of the obstacles (reflectors), receivers and targets, we derive the Maximum Likelihood (ML)-based functions in terms of 3D target positions in both cases of known and unknown transmitting times. The proposed algorithm can skip the estimation of intermediate parameters, thus solving the problems of NLOS identification and data association inherent in traditional two-step localization methods. To avoid multi-dimensional nonlinear optimization which is frequently encountered in localization of multiple targets, the proposed algorithm decouples the locations of multiple targets into several location problems of each target by exploiting information of uncorrelated known waveforms. By making the approximation of the objective function, only a 3D grid search is required in both cases of known and unknown transmitting times. Therefore, our algorithm is computationally more attractive compared with two-step localization methods. Additionally, we derive the compact Cramér-Rao Bound (CRB) expressions for target positions based on the multipath model when the transmitting times are known or unknown. Simulation results demonstrate that the performance of the proposed algorithm can reach the associated CRB, and is superior to traditional two-step localization methods and existing subspace-based DPD algorithms.

参考文献

[1] 王鼎, 张刚, 沈彩耀, 等. 一种针对恒模信号的运动单站直接定位算法[J]. 航空学报, 2016, 37(5):1622-1633. WANG D, ZHANG G, SHEN C Y, et al. A direct position determination algorithm for constant modulus signals[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1622-1633(in Chinese).[2] 赵卫波, 巴斌, 胡捍英, 等. 多天线NLOS定位误差抑制算法[J]. 信号处理, 2013, 29(7):873-879. ZHAO W B, BA B, HU H Y, et al. Multi-antenna NLOS location error mitigation algorithm[J]. Journal of Signal Processing, 2013, 29(7):873-879(in Chinese).[3] SHIKUR B Y, WEBER T. TDOA/AOD/AOA localization in NLOS environments[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE Press, 2014:6518-6522.[4] 周杰, 刘鹏, 黄雷, 等. 室内直达与非直达环境无线传播综合信道建模[J]. 物理学报, 2015, 64(17):56-65. ZHOU J, LIU P, HUANG L, et al. Indoor wireless propagation under line of sight and no line of sight comprehensive channel modeling[J]. Acta Physica Sinica, 2015, 64(17):56-65(in Chinese).[5] ZHANG S, GAO S, WANG G, et al. Robust NLOS error mitigation method for TOA-based localization via second-order cone relaxation[J]. IEEE Communications Letters, 2015, 19(12):1-4.[6] WANG G, SO M C, LI Y. Robust convex approximation methods for TDOA-based localization under NLOS conditions[J]. IEEE Transactions on Signal Processing, 2016, 64(13):3281-3296.[7] WANG Z, ZEKAVAT S A. Omnidirectional mobile NLOS identification and localization via multiple cooperative nodes[J]. IEEE Transactions on Mobile Computing, 2012, 99(12):2047-2059.[8] SONG H B, WANG H G, HONG K, et al. A novel source localization scheme based on unitary esprit and city electronic maps in urban environments[J]. Progress in Electromagnetics Research, 2009, 94(4):243-262.[9] KIKUCHI S, SANO A, TSUJI H. Blind mobile positioning in urban environment based on ray-tracing analysis[J]. EURASIP Journal on Advances in Signal Processing, 2006(1):1-12.[10] DEMISSIE B. Direct localization and detection of multiple sources in multi-path environments[C]//Proceedings of the International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2011:1-8.[11] WAX M, KAILATH T. Optimum localization of multiple sources by passive arrays[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1983, 31(5):1210-1217.[12] TIRER T, WEISS A J. High resolution direct position determination of radio frequency sources[J]. IEEE Signal Processing Letters, 2016, 23(2):192-196.[13] 张敏, 郭福成, 周一宇.基于单个长基线干涉仪的运动单站直接定位[J]. 航空学报, 2013, 34(2):378-386. ZHANG M, GUO F C, ZHOU Y Y. A single moving observer direct position determination method using a long baseline interferometer[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):378-386(in Chinese).[14] WANG D, WU Y. Statistical performance analysis of direct position determination method based on Doppler shifts in presence of model errors[J]. Multidimensional Systems and Signal Processing, 2015, 28(1):1-34.[15] 张敏, 郭福成, 周一宇, 等.运动单站干涉仪相位差直接定位方法[J].航空学报, 2013, 34(9):2185-2193. ZHANG M, GUO F C, ZHOU Y Y, et al. A single moving observer direct position determination method using interferometer phase difference[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2185-2193(in Chinese).[16] BAR-SHALOM O, WEISS A J. Transponder-aided single platform geolocation[J]. IEEE Transactions on Signal Processing, 2013, 61(5):1239-1248.[17] BAR-SHALOM O, WEISS A J. Emitter geolocation using single moving receiver[J]. Signal Processing, 2014, 105(12):70-83.[18] PAPAKONSTANTINOU K, SLOCK D. Direct location estimation using single-bounce NLOS time-varying channel models[C]//Vehicular Technology Conference. Piscataway,NJ:IEEE Press, 2008:1-5.[19] WEISS A J, AMAR A. Direct position determination of multiple radio signals[J]. EURASIP Journal on Applied Signal Processing, 2005(1):37-49.[20] AMAR A, WEISS A J. Direct position determination in the presence of model errors-known waveforms[J]. Digital Signal Processing, 2006, 16(1):52-83.[21] LI J Z, YANG L, GUO F C, et al. Coherent summation of multiple short-time signals for direct positioning of a wideband source based on delay and Doppler[J]. Digital Signal Processing, 2016, 48(C):58-70.[22] 王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京:清华大学出版社, 2005:20-21. WANG Y L, CHEN H, PENG Y N, et al. Spatial spectrum estimation theory and algorithms[M]. Beijing:Tsing-hua University Press, 2005:20-21(in Chinese).[23] PEKKA S, PAEIVI M, KARIN A. Linearization method for finding Cramér-Rao bounds in signal processing[J]. IEEE Transactions on Signal Processing, 2001, 49(12):3168-3169.[24] WANG C, TANG J, WU Y. Eigenspace-based beamforming technique for multipath coherent signals reception[J]. Signal Processing, 2016, 128(C):150-154.
文章导航

/