流体力学与飞行力学

考虑机翼几何非线性的气动弹性建模与分析

  • 郭同彪 ,
  • 白俊强 ,
  • 孙智伟 ,
  • 王晨
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 西北工业大学 无人机研究所, 西安 710065

收稿日期: 2017-04-25

  修回日期: 2017-07-12

  网络出版日期: 2017-07-12

基金资助

产学研基金(cxy2014XGD09)

Aeroelastic modeling and analysis of wings considering geometric nonlinearity

  • GUO Tongbiao ,
  • BAI Junqiang ,
  • SUN Zhiwei ,
  • WANG Chen
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. UAV Research Institute, Northwestern Polytechnical University, Xi'an 710065, China

Received date: 2017-04-25

  Revised date: 2017-07-12

  Online published: 2017-07-12

Supported by

National Basic Research Program of China (2014CB744804)

摘要

大展弦比柔性机翼结构重量轻、气动效率高,广泛应用于高空长航时无人机(UAVs)。飞行过程中,这类机翼在气动力作用下发生大变形,线性结构模型不再适用,需要建立考虑几何大变形的结构模型。采用牛顿力学方法推导了考虑结构几何非线性的机翼结构动力学模型,该方法推导过程简洁、物理意义明确,可以与Hodges基于哈密顿原理的推导方法相互补充,相互验证。为了能够更准确地求解大展弦比柔性机翼的非定常气动力,建立了能够考虑机翼三维效应且适用于机翼空间大变形的非定常气动力模型。基于建立的非线性结构模型和非定常气动力模型,采用松耦合方法建立了非线性气动弹性模型,并通过算例验证了气弹模型的准确性。研究结果表明,大展弦比柔性机翼颤振速度对来流迎角和机翼的展长均较为敏感;当来流速度大于颤振速度时,由于几何非线性,机翼振动并未发散而是形成稳定的极限环振荡(LCO);随着来流速度进一步增加,机翼再次穿过临界稳定点,由不稳定系统变为稳定系统,直到随着速度的增加系统再次达到临界稳定状态。

本文引用格式

郭同彪 , 白俊强 , 孙智伟 , 王晨 . 考虑机翼几何非线性的气动弹性建模与分析[J]. 航空学报, 2017 , 38(11) : 121351 -121351 . DOI: 10.7527/S1000-6893.2017.121351

Abstract

Flexible wings with high aspect ratio are widely used in high-altitude and long-endurance Unmanned Aerial Vehicles (UAVs) because of low structural weight and high aerodynamic lift-to-drag ratio. This kind of wings experience large geometric deformation in flight, and the linear structure model based on small deformation hypothesis is no longer applicable. Therefore, it is necessary to build the structure model which can simulate geometric nonlinearity. Based on the Newtonian method, the dynamic equations for the geometric non-linear structure model are derived, which can be mutually validated by and complemented with the method based on Hamilton's principle derived by Hodges. To simulate the aerodynamics of flexible wings more precisely, a model for three-dimensional unsteady aerodynamics, which can consider large deformation of the wing, is built. Based on the nonlinear structure model and the unsteady aerodynamic model, the nonlinear aeroelastic model is built through loose coupling. The precision of the aeroelastic model is verified through tests. The results show that the flutter speed of flexible wings is sensitive to the free-stream angles of attack and span-wise length. When the free-stream speeds exceed the flutter speed, the wing's vibrations are stable Limited Cycle Oscillations (LCO) rather than divergence. However, as the free-stream speeds continues increasing, the wing's vibrations converge again and the damping turned to be positive.

参考文献

[1] NOLL T E, ISHMAEL S D, HENWOOD B, et al. Technical findings, lessons learned, and recommendations resulting from the Helios prototype vehicle mishap[C]//Processes and Criteria for UAV Structural Integrity, 2007.
[2] PATIL M J, HODGES D H. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings[J]. Journal of Fluids and Structures, 2004, 19(7):905-915.
[3] TANG D M, DOWELL E H. Effects of geometric structural nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings[J]. Journal of Fluids and Structures, 2004, 19(3):291-306.
[4] AFONSO F,VALE J, OLIVEIRA É, et al. A review on non-linear aeroelasticity of high aspect-ratio wings[J]. Progress in Aerospace Sciences, 2017, 89:40-57.
[5] HODGES D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures, 1990, 26(11):1253-1273.
[6] PATIL M J, HODGES D H, CESNIK C E S. Limit-cycle oscillations in high-aspect-ratio wings[J]. Journal of Fluids and Structures, 2001, 15(1):107-132.
[7] XIANG J W, YAN Y J, LI D C. Recent advance in nonlinear aeroelastic analysis and control of the aircraft[J]. Chinese Journal of Aeronautics, 2014, 27(1):12-22.
[8] PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft[J]. Journal of Aircraft, 2001, 38(1):88-94.
[9] 段静波, 周洲, 王伟, 等. 大展弦比大柔性机翼载荷分布求解的一种方法[J]. 航空学报, 2016, 37(3):799-809. DUAN J B, ZHOU Z, WANG W, et al. A method for aeroelastic load redistribution of very flexible wing with a high-aspect-ratio[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):799-809(in Chinese).
[10] 王伟, 段卓毅, 耿建中, 等. 基于CR理论的大柔性机翼几何非线性结构建模[J]. 航空学报,2017, 38(S1):721544. WANG W, DUAN Z Y, GENG J Z, et al. Geometrically nonlinear structural model for very flexible wing based on CR theory[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721544(in Chinese).
[11] 杨超, 王立波, 谢长川, 等. 大变形飞机配平与飞行载荷分析方法[J]. 中国科学:技术科学, 2012, 42(10):1137-1147. YANG C, WANG L B, XIE C C, et al. Aeroelastic trim and flight loads analysis of flexible aircraft with large deformations[J]. Sci China Tech Sci, 2012, 42(10):1137-1147(in Chinese).
[12] WANG W, ZHU X P, ZHOU Z, et al. A method for nonlinear aeroelasticity trim and stability analysis of very flexible aircraft based on co-rotational theory[J]. Journal of Fluids and Structures, 2016, 62:209-229.
[13] TANG D M, DOWELL E H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings[J]. AIAA Journal, 2001, 39(8):1430-1441.
[14] ESKANDARY K, DARDEL M, PASHAEI M H, et al. Nonlinear aeroelastic analysis of high-aspect-ratio wings in low subsonic flow[J]. Acta Astronautica, 2012, 70(1):6-22.
[15] ARENA A, LACARBONARA W, MARZOCCA P. Nonlinear aeroelastic formulation and postflutter analysis of flexible high-aspect-ratio wings[J]. Journal of Aircraft, 2013, 50(6):1748-1764.
[16] SHAMS S, SADR M H, HADDADPOUR H. An efficient method for nonlinear aeroelasticy of slender wings[J]. Nonlinear Dynamics, 2012, 67(1):659-681.
[17] 杨智春, 张惠, 谷迎松, 等. 考虑几何非线性效应的大展弦比机翼气动弹性分析[J]. 振动与冲击, 2014,33(16):72-75. YANG Z C, ZHANG H, GU Y S, et al. Aeroelastic analysis of the high aspect ratio wing considering the geometric nonlinearity[J]. Journal of Vibration and Shock, 2014, 33(16):72-75(in Chinese).
[18] SULEMAN A, AFONSO F, VALE J, et al. Non-linear aeroelastic analysis in the time domain of high-aspect-ratio wings:Effect of chord and taper-ratio variation[J]. Aeronautical Journal, 2017, 121(1235):21-52.
[19] 谢长川, 胡锐, 王斐, 等. 大展弦比柔性机翼气动弹性风洞模型设计与试验验证[J]. 工程力学, 2016, 33(11):249-256. XIE C C, HU R, WANG F, et al. Aeroelastic wind tunnel test model design and experiment on very flexible high-aspect-ratio wings[J]. Engineering Mechanics, 2016, 33(11):249-256(in Chinese).
[20] LIU Y, XIE C C, YANG C, et al. Gust response analysis and wind tunnel test for a high-aspect ratio wing[J]. Chinese Journal of Aeronautics, 2016, 29(1):91-103.
[21] KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. Cambridge:Cambridge University Press, 2001.
[22] HODGES D H. Nonlinear composite beam theory[M]. Reston, VA:AIAA, 2006.
[23] GÉRADIN M, CARDONA A. Flexible multibody dynamics:A finite element approach[M]. Chichester:Wiley, 2001.

文章导航

/