收稿日期: 2017-05-25
修回日期: 2017-07-07
网络出版日期: 2017-07-07
基金资助
国家自然科学基金(11372297,11402252)
Prediction of meso-heat transfer characteristics of resin-based ablative materials
Received date: 2017-05-25
Revised date: 2017-07-07
Online published: 2017-07-07
Supported by
National Natural Science Foundation of China (11372297,11402252)
低密度树脂基烧蚀材料在近年来的深空探测等航天器上得到了广泛的应用,为了更好地提高其隔热能力,需要对其传热机理进行分析,尤其是基于细观尺度的传热分析可以更好地探究其传热机理。依据对树脂基烧蚀材料的细观结构观测和统计分析,建立了不同尺度的单胞理论模型,并将计算结果与实验值进行比较,给出参数化影响规律。同时,建立了有限元随机模型,与实验值进行比较,并给出了基于有限元的参数化影响规律。结果表明,建立的单胞理论模型与实验值的误差,对于两种树脂基烧蚀材料,分别为12%和7.6%左右,从而验证了建立的理论模型的正确性;随机模型所得导热系数值与实验值误差在10%以内,验证了随机模型的正确性。所建模型和参数化分析所得规律对于树脂基烧蚀材料隔热性能的提高和加工工艺的改进具有重要意义。
高俊杰 , 俞继军 , 韩海涛 , 邓代英 . 树脂基烧蚀材料细观传热特性预测[J]. 航空学报, 2017 , 38(S1) : 721512 -721512 . DOI: 10.7527/S1000-6893.2017.721512
Low-density resin-based ablative materials have been widely used in spacecraft for deep space exploration in recent years. To improve their thermal insulation capacity, we need to conduct an analysis of the mechanism of heat transfer, especially meso-heat transfer, of the material. Based on microscopic observation and statistical analysis of the material, a theoretical model for the unit cells of different scales of the material was established. The calculated results were compared with the experimental values, and the influence of the parameters was given. A finite element stochastic model was also established. The calculated results were compared with the experimental values, and the influence of parameterization based on finite element was given. The results show that the error between the theoretical model and the experimental value is 12% and 7.6% for the two resin-based ablation materials respectively, and the correctness of the theoretical model is thus verified. The difference between the thermal conductivity values obtained with the stochastic model and the experimental values is less than 10%, verifying the correctness of the stochastic model. The model proposed and parameter analysis is of great significance for improvement of the thermal insulation performance and processing technology of the resin-based ablative material.
[1] 陆小龙. 酚醛树脂基复合材料制备及其烧蚀性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. LU X L. Preparation of phenolic resin matrix composites and its ablation properties[D]. Harbin: Harbin Institute of Technology, 2012 (in Chinese).
[2] DASGUPTA A, AGARWAL R K. Orthotropic thermal conductivity of plain-weave fabric composites using a homogenization technique[J]. Journal of Composite Materials, 1992, 26(18): 2736-2758.
[3] ZENG S O, HUNT A, GREIF R. Geometric structure and thermal conductivity of porous medium silica aerogel[J]. Journal of Heat Transfer, 1995, 117(4): 1055-1058.
[4] NING Q G, CHOU T W. Closed-form solutions of the in-plane effective thermal conductivities of woven-fabric composites[J]. Composites Science & Technology, 1995, 55(1): 41-48.
[5] DASGUPTA A, AGARWAL R K, BHANDARKAR S M. Three-dimensional modeling of woven-fabric composites for effective thermo-mechanical and thermal properties[J]. Composites Science & Technology, 1996, 56(3): 209-223.
[6] BIGAUD D, GOYHENECHE J M, HAMELIN P. A global-local non-linear modeling of effective thermal conductivity tensor of textile-reinforced composites[J]. Composites Part A: Applied Science & Manufacturing, 2001, 32(10): 1443-1453.
[7] AL-SULAIMAN F A, MOKHEIMER E M A, AL-NASSAR Y N. Prediction of the thermal conductivity of the constituents of fiber reinforced composite laminates[J]. Heat and Mass Transfer, 2006, 42(5): 370-377.
[8] FAROOQI J K, SHEIKH M A. Finite element modelling of thermal transport in ceramic matrix composites[J]. Computational Materials Science, 2006, 37(3): 361-373.
[9] SCHUSTER J, HEIDER D, SHARP K, et al. Thermal conductivities of three-dimensionally woven fabric composites[J]. Composites Science & Technology, 2008, 68(9): 2085-2091.
[10] LI H, LI S G, WANG Y C. Prediction of effective thermal conductivities of woven fabric composites using unit cells at multiple length scales[J]. Journal of Materials Research, 2011, 26(3): 384-394.
[11] 陈则韶, 钱军, 叶一火. 复合材料等效导热系数的理论推算[J]. 中国科学技术大学学报, 1992(4): 416-424. CHEN Z S, QIAN J, YE Y H. Theoretical calculation of equivalent thermal conductivity of composites[J]. Journal of University of Science and Technology of China, 1992(4): 416-424 (in Chinese).
[12] 程耿东, 刘书田. 单向纤维复合材料导热性预测[J]. 复合材料学报, 1996, 13(1): 78-85. CHENG G D, LIU S T. Prediction of thermal conductivity of unidirectional fiber composites[J]. Acta Mareriae Composite Sinica, 1996, 13(1): 78-85 (in Chinese).
[13] 李锋华. 聚合物/中空微球复合材料传热性能及机理的研究[D]. 广州: 华南理工大学, 2003. LI F H. Study on heat transfer performance and mechanism of polymer/hollow microsphere composites[D]. Guangzhou: South China University of Technology, 2003 (in Chinese).
[14] 夏彪, 卢子兴. 三维编织复合材料热物理性能的有限元分析[J]. 航空学报, 2011, 32(6): 1040-1049. XIA B, LU Z X. Finite element analysis of thermophysical properties of 3D braided composites[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1040-1049 (in Chinese).
[15] 罗文, 黄志雄, 黄赤, 等. 复合泡沫塑料等效导热系数的数值模拟[J]. 武汉理工大学学报, 2015, 37(12): 12-16. LUO W, HUANG Z X, HUANG C, et al. Numerical simulation of equivalent thermal conductivity of composite foam[J]. Journal of Wuhan University of Technology, 2015, 37(12): 12-16 (in Chinese).
[16] 方文振, 粘权鑫, 张虎, 等. 气凝胶及其纤维复合材料等效导热系数预测[J]. 西安交通大学学报, 2015, 49(7): 25-29. FANG W Z, NIAN Q X, ZHANG H, et al. Prediction of equivalent thermal conductivity of airgel and its fiber composites[J]. Journal of Xi'an Jiaotong University, 2015, 49(7): 25-29 (in Chinese).
[17] CUNNINGTON G R, ZIERMAN C A, FUNAI A I, et al. Performance of multilayer insulation systems for temperature to 700K: NASA CR-907[R]. Washington, D.C.: NASA, 1967.
/
〈 | 〉 |