流体力学与飞行力学

高速平板着水数值模拟

  • 卢昱锦 ,
  • 肖天航 ,
  • 李正洲
展开
  • 南京航空航天大学 航空宇航学院 飞行器先进设计技术国防重点学科实验室, 南京 210016

收稿日期: 2017-05-25

  修回日期: 2017-07-04

  网络出版日期: 2017-07-04

基金资助

国防预研项目;江苏省普通高校研究生科研创新计划(KYLX16_0392);江苏高校优势学科建设工程资助项目

Numerical simulation of high speed plate ditching

  • LU Yujin ,
  • XIAO Tianhang ,
  • LI Zhengzhou
Expand
  • National Defense Key Laboratory of Aircraft Advanced Design Technology, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2017-05-25

  Revised date: 2017-07-04

  Online published: 2017-07-04

Supported by

National Defense Pre-research Foundation; Funding of Jiangsu Innovation Program for Graduate Education (KYLX16_0392); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

探索和揭示物体入水冲击的流体力学现象与机理对飞行器水上迫降问题的研究有重要的参考价值。对高速平板着水涉及到的复杂物理问题展开数值模拟,采用有限体积法求解非定常雷诺平均Navier-Stokes(URANS)方程和标准k-ε湍流模型,流体体积(VOF)模型捕捉水气交界面,整体动网格技术处理平板与水面的相对运动。在二维楔形体入水冲击的算例验证基础上,详细研究平板高速着水引起流体喷溅、射流、空气垫等现象和平板底面压力变化历程,结果表明:空气垫现象明显,俯仰角4°平板下表面出现规律的空气泡,10°时则不存在;平板下表面的水体沿壁面运动,当俯仰角为10°时,壁面水体的运动速度显著增加;在大俯仰角的情况下明显出现负压区。

本文引用格式

卢昱锦 , 肖天航 , 李正洲 . 高速平板着水数值模拟[J]. 航空学报, 2017 , 38(S1) : 721498 -721498 . DOI: 10.7527/S1000-6893.2017.721498

Abstract

To have a deeper understanding of aircraft ditching, it is crucial to explore the hydrodynamics and mechanism of impact of water-entry objects. This paper numerically investigates the complex physical problems of high speed plate ditching using the finite volume method coupled with the Volume of Fluid (VOF) model. The Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations and the Standard k-ε turbulence model are solved by the finite volume method. The VOF model is applied to capture the air-water interface. The relative motion between the plate and water is handled by the global dynamic mesh method. The high speed ditching of a 2D wedge-shaped body is studied, including the pressure distributions on lower surface of the plate and free surface deformations such as splash formation, movement and air cushion effects. The results show that there is obvious air cushion in the plate, with occurrence of regular air bubbles under the plate at 4° pitching angle, while no occurrence of air bubbles at 10° pitching angle. The water under the plate moves along the bottom of the plate, and the water speed increases dramatically at 10° pitching angle. The negative pressure zone appears significantly at large pitching angle.

参考文献

[1] KARMAN V T. The impact on seaplane floats during landing: NACA TN 321[R]. Washington, D.C.: National Advisory Committee for Aeronautics, 1929.
[2] WAGNER H. Phenomena associated with impacts and sliding on liquid surface[J]. Journal of Applied Mathematics and Mechanics, 1932, 12(4): 193-215 (in German).
[3] MAYO W L. Analysis and modification of theory for impact of seaplanes on water: NACA TR 810[R]. Washington, D.C.: National Advisory Committee for Aeronautics, 1945.
[4] LEIGH B R. Using the momentum method to estimate aircraft ditching loads[J]. Canadian Aeronautics and Space Journal, 1988, 34: 162-169.
[5] PENTECOTE N. Validation of the PAM-CRASH code for the simulation of the impact on water: DLR-IB 435.2003/3[R]. Stuttgart: Institute of Structures and Design, 2003.
[6] PENTECOTE N, VIGLIOTTI A. Crashworthiness of helicopters on water: Test and simulation of a full-scale WG30 impacting on water[J]. International Journal of Crashworthiness, 2003, 8(6): 559-572.
[7] SHOEMAKER J M. Tank tests of flat and v-bottom planning surfaces: NACA TN 509[R]. Washington, D. C.: National Advisory Committee for Aeronautics, 1934.
[8] MILWITZKY B. A generalized theoretical and experimental investigation of the motions and hydrodynamic loads experienced by v-bottom seaplanes during step-landing impacts: NACA TN 1516[R]. Washington, D.C.: National Advisory Committee for Aeronautics, 1948.
[9] MILWITZKY B. A generalized theoretical investigation of the hydrodynamic pitching moments experienced by v-bottom seaplanes during step-landing impacts and comparisons with experiment: NACA TN 1630[R]. Washington, D. C.: National Advisory Committee for Aeronautics, 1948.
[10] XU G D, DUAN W Y, WU G X. Numerical simulation of water entry of a cone in free-fall motion[J]. Quarterly Journal of Mechanics and Applied Mathematics, 2011, 64(3): 265-285.
[11] VIGNJEVIC R, MEO M. Simulation of helicopter under-floor structure impact on water[J]. International Journal of Crashworthiness, 2001, 6(3): 425-443.
[12] ORTIZ R, PORTEMONT G, CHARLES J L, et al. Assessment of explicit FE capabilities for full scale coupled fluid/structure aircraft ditching simulation[C]//International Council of the Aeronautical Sciences, 2002.
[13] XIAO T H, QIN N, LU Z Y, et al. Development of a smoothed particle hydrodynamics method and its application to aircraft ditching simulations[J]. Aerospace Science and Technology, 2017, 66: 28-43.
[14] WICK A T, ZINK G A, RUSZKOWSKI R A, et al. Computational simulation of an unmanned air vehicle impacting water[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA: AIAA, 2007.
[15] QU Q L, HU M X, GUO H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft, 2015, 52(5): 1550-1558.
[16] IAFRATI A, SIEMANN M H, MONTAÉS L B. Experimental study of high speed plate ditching[C]//29th International Workshop on Water Waves and Floating Bodies, 2014.
[17] 陈震, 肖熙. 空气垫在平底结构入水砰击中作用的仿真分析[J]. 上海交通大学学报, 2005, 39(5): 670-673. CHEN Z, XIAO X. Simulation analysis on the role of air cushion in the slamming of a flat-bottom structure[J]. Journal of Shanghai Jiao Tong University, 2005, 39(5): 670-673 (in Chinese).
[18] SIEMANN M H, KOHLGRüBER D, MONTAÉS L B, et al. Numerical simulation and experimental validation of guided ditching tests[C]//11th World Congress on Computational Mechanics, 2014.
[19] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[20] ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246: 593-612.
[21] ZHAO R, FALTINSEN O, AZRSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]//21st Symposium on Naval Hydrodynamics, 1996.
[22] MEI X M, LIU Y M, YUE D K P. On the water impact of general two-dimensional sections[J]. Applied Ocean Research, 1999, 21(1): 1-15.
[23] HOWISON S D, OCKENDON J R, WILSON S K. Incompressible water-entry problems at small deadrise angles[J]. Journal of Fluid Mechanics, 1991, 222: 215-230.
[24] OGER G, DORING M, ALESSANDRINI B, et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213(2): 803-822.

文章导航

/