流体力学与飞行力学

蜻蜓非对称扑动时的气动特性

  • 张锐 ,
  • 周超英 ,
  • 汪超 ,
  • 谢鹏
展开
  • 哈尔滨工业大学 深圳研究生院, 深圳 518055

收稿日期: 2017-05-04

  修回日期: 2017-07-04

  网络出版日期: 2017-07-04

基金资助

深圳市创新计划重点实验室提升项目(ZDSYS20140508161547829);深圳科技基础研究计划项目(JCYJ20150625142543480&JCYJ20150625142543449)

Aerodynamic characteristics of dragonfly in asymmetric flapping

  • ZHANG Rui ,
  • ZHOU Chaoying ,
  • WANG Chao ,
  • XIE Peng
Expand
  • Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China

Received date: 2017-05-04

  Revised date: 2017-07-04

  Online published: 2017-07-04

Supported by

Innovation Program Key Laboratory Upgrading Project of Shenzhen (ZDSYS20140508161547829); Basic Research Pro-gram of Science and Technology Project of Shenzhen (JCYJ20150625142543480 & JCYJ20150625142543449)

摘要

蜻蜓等昆虫作为飞行领域的佼佼者具有优异的机动性能,然而基于仿生学研制的微型扑翼飞行器在机动性能方面却远不如昆虫。为研究昆虫机动飞行时的气动特性,采用有限体积法(FVM)对蜻蜓左右两侧翅膀非对称扑动时的三维气动力及力矩进行了数值计算,并对不同扑动幅值下蜻蜓的整体气动性能以及每一个翅膀的气动性能、压力分布及流场结构进行了系统分析。结果表明:仅需增加某侧两翅的扑动幅值即可实现向另一侧的机动飞行;相比后翅,扑动幅值对前翅的升推力、滚转及偏航力矩影响较大,而对侧向力的影响较小;扑动幅值对翅膀的瞬时阻力、侧向力、偏航及俯仰力矩在整个扑动周期内均产生了明显影响,而对瞬时升力和滚转力矩的影响则集中在下扑阶段;扑动幅值改变了翅膀前缘涡、尾涡的强度及上下表面的压力差,在下扑阶段,翅膀和蜻蜓对称面有个相对倾角,气动合力产生了较大的侧向力,而上扑阶段,翅膀几乎垂直对称面,产生的侧向力较小。以上结果对于仿生扑翼飞行器的控制及气动设计具有一定指导意义。

本文引用格式

张锐 , 周超英 , 汪超 , 谢鹏 . 蜻蜓非对称扑动时的气动特性[J]. 航空学报, 2017 , 38(12) : 121389 -121389 . DOI: 10.7527/S1000-6893.2017.121389

Abstract

Insects including dragonfly with powerful maneuvering performance are accounted as the best experts in aviation. However, ornithopters inspired by insects have much poorer maneuverability than insects. To find out the maneuvering aerodynamics of insects, a numerical study of the 3D aerodynamic forces and moments of a dragonfly in asymmetric flapping is carried out using the Finite Volume Method (FVM). The total aerodynamics of the dragonfly, aerodynamics of each wing, pressure distributions and vorticity are analyzed at different flapping amplitude. The results indicate that maneuvering flight to one side can be achieved by increasing the flapping amplitude of the two wings on the other side. Compared with the hindwing, the flapping amplitude has greater effect on the lift, thrust, roll and yaw moments of the forewing, and smaller effect on the lateral force. The instantaneous drag, lateral force, yaw and pitch moments are influenced by the flapping amplitude during the whole flapping cycle, and the flapping amplitude affects the instantaneous lift and roll moment obviously in down-stroke. The flapping amplitude changes the leading edge vortex, trailing vortex and the pressure difference between the upper and lower surfaces. In down-stroke, there is a slant angle between the wings and the symmetric plane of the dragonfly to lead to greater lateral force, and in up-stroke, the wings are almost vertical to the symmetric plane, which means the generation of smaller lateral force. These results can offer some guidance for attitude control and aerodynamic design of ornithopters.

参考文献

[1] SHYY W, LIAN Y, TANG J, et al. Aerodynamics of low Reynolds number flyers[J]. AIAA Journal, 2008, 47(1):287-287.[2] WEISFOGH T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production[J]. Journal of Experimental Biology, 1973, 59(1):169-230.[3] ELLINGTON C P, VAN B C, WILLMOTT A P, et al. Leading edge vortices in insect flight[J]. Nature, 1996, 384(6610):626-630.[4] DICKINSON M H. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422):1954-1960.[5] 王掩刚, 陈为雄, 邓双厚, 等. 微型扑翼飞行器扑翼/尾翼气动干扰的数值研究[J]. 航空动力学报, 2015, 30(2):257-264. WANG Y G, CHEN W X, DENG S H, et al. Numerical study of flapping wing/tail aerodynamic interaction for flapping wing micro air vehicle[J]. Journal of Aerospace Power, 2015, 30(2):257-264(in Chinese).[6] CHEN Y H, SKOTE M, ZHAO Y, et al. Dragonfly (Sympetrum Flaveolum) flight:Kinematic measurement and modelling[J]. Journal of Fluids & Structures, 2013, 40(7):115-126.[7] 朱霖霖, 吴锤结. 三维扑翼鸟在自主飞行中俯仰角的控制和数值模拟[J]. 中国科学:物理学力学天文学, 2016, 46(6):1-13. ZHU L L, WU C J. Numerical simulation and control of the angle of pitch of self-propelled flying bird with flapping wings[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2016, 46(6):1-13(in Chinese).[8] OLIVIER M, DUMAS G. A parametric investigation of the propulsion of 2D chordwise-flexible flapping wings at low Reynolds number using numerical simulations[J]. Journal of Fluids & Structures, 2016, 63:210-237.[9] ZHANG Y L, SUN M. Dynamic flight stability of a hovering model insect:Lateral motion[J]. Acta Mechanica Sinica, 2010, 26(2):175-190.[10] SRIDHAR M, KANG C K. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight[J]. Bioinspiration & Biomimetics, 2015, 10(3):036007.[11] 张锐, 周超英. 昆虫级褶皱翼型的滑翔气动特性[J]. 航空动力学报, 2014, 29(3):652-656. ZHANG R, ZHOU C Y. Gliding aerodynamic characteristics of insect-size corrugated airfoils[J]. Journal of Aerospace Power, 2014, 29(3):652-656(in Chinese).[12] WU J, SUN M. Control for going from hovering to small speed flight of a model insect[J]. Acta Mechanica Sinica, 2009, 25(3):295-302.[13] ALEXANDER D E. Wind tunnel studies of turns by flying dragonflies[J]. Journal of Experimental Biology, 1986, 122(1):81-98.[14] FRY S N, SAYAMAN R, DICKINSON M H. The aerodynamics of free-flight maneuvers in drosophila[J]. Science, 2003, 300(5618):495-498.[15] RISTROPH L, BERMAN G J, BERGOU A J, et al. Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects[J]. Journal of Experimental Biology, 2009, 212(9):1324-1335.[16] ZHANG Y L, SUN M. Wing kinematics measurement and aerodynamics of free-flight maneuvers in drone-flies[J]. Acta Mechanica Sinica, 2010, 26(3):371-382.[17] RAMAMURTI R, SANDBERG W C. A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering[J]. Journal of Experimental Biology, 2007, 210(5):881-896.[18] WANG H, ZENG L, LIU H, et al. Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies[J]. Journal of Experimental Biology, 2003, 206(4):745-757.[19] BHATIA M, PATIL M, WOOLSEY C, et al. Stabilization of flapping-wing micro-air vehicles in gust environments[J]. Journal of Guidance Control & Dynamics, 2014, 37(2):592-607.[20] PARK H, CHOI H. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes[J]. Bioinspiration & Biomimetics, 2012, 7(1):016008.[21] WANG J K, SUN M. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight[J]. Journal of Experimental Biology, 2005, 208(19):3785-3804.[22] ALEXANDER D E. Unusual phase relationships between the forewings and hindwings in flying dragonflies[J]. Journal of Experimental Biology, 1984, 109:379-383.[23] YOUNG J, LAI J C S, GERMAIN C. Simulation and parameter variation of flapping-wing motion based on dragonfly hovering[J]. AIAA Journal, 2012, 46(4):918-924.[24] ZHANG R, XIE P, ZHOU C Y, et al. Three-dimensional numerical study on the interaction of contralateral insect wings in asymmetric stroke[J/OL]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,(2017-03-23)[2017-04-25].http://journals.sagepub.com/doi/10.1177/095441001769.[25] YU X, SUN M. A computational study of the wing-wing and wing-body interactions of a model insect[J]. Acta Mechanica Sinica, 2009, 25(4):421-431.[26] LIANG B, SUN M. Aerodynamic interactions between contralateral wings and between wings and body of a model insect at hovering and small speed motions[J]. Chinese Journal of Aeronautics, 2011, 24(4):396-409.
文章导航

/