Unsteady simulation of rotating stall in a transonic compressor rotor
Received date: 2017-05-25
Revised date: 2017-07-01
Online published: 2017-06-30
为研究跨声速压气机转子失速机理,全周非定常数值模拟了某跨声速压气机单转子的失稳过程。结果表明:该转子由叶尖Spike扰动诱发旋转失速。在小流量稳定工作状态,压气机转子叶尖区域存在"旋转不稳定"(Rotating Instability,RI)流动现象。压气机节流过程中,转子进出口的流量降低,叶尖区流场非定常波动幅值增大。近失速状态时,RI扰动团的典型流场结构"径向涡"在叶尖区域形成堵塞,导致相邻叶片前缘间歇性地出现溢流现象。随着压气机进一步节流,转子叶尖的负荷达到极值,叶片通道尾缘逆压力梯度过大,出现倒流。尾缘倒流的出现又进一步增加通道内的堵塞,最终形成Spike扰动。失速先兆对应的流场结构是沿叶片前缘额线向相邻叶片压力面周向运动的"径向涡"结构。
付磊 . 跨声速压气机转子旋转失速现象的非定常模拟[J]. 航空学报, 2017 , 38(S1) : 721524 -721524 . DOI: 10.7527/S1000-6893.2017.721524
To investigate the mechanism of the stall inception of transonic compressor rotor,an annulus unsteady numerical simulation is performed. Results show that the stall inception of this rotor is spike-type. "Rotating instability" (RI) occurs in the tip region when the compressor is operating in the low mass flow region. During the compressor's throttling, the mass flow rate through the rotor decreases, and the amplitude of the tip vortex oscillation increases significantly. Under near stall condition, the "radial vortex" of the RI cells causes large blockage in the tip region, leading to a spillage of tip-clearance flow to the adjacent blade passage ahead of the rotor leading edge intermittently. When the compressor is throttled further, the blade loading exceeds its maximum, and the higher static pressure pushes the fluid originating from the tip-clearance region of one blade to move across the blade passage into the neighboring passage by passing around the trailing edge. When these flow events (spillage of tip-leakage flow at the leading edge and tip-clearance backflow at the trailing edge) occur at the same time, spike disturbance is generated. The formation of the stall inception is the "radial vortex", which moves circumferentially along the leading edge line.
[1] CAMP T R, DAY I J. A study of spike and modal stall phenomena in a low-speed axial compressor[J]. Journal of Turbomachinery, 1998, 120(3):393-401.
[2] GARNIER V, EPSTEIN A, GREITZER E M. Rotating waves as a stall inception indication in axial compressors[J]. Journal of Turbomachinery, 1991, 113(2): 290-301.
[3] DAY I J. Stall inception in axial flow compressors[J]. Journal of Turbomachinery, 1993, 115(1): 1-9.
[4] 聂超群, 陈静宜, 蒋浩康, 等. 低速轴流压气机旋转失速先兆特征的实验分析[J]. 工程热物理学报, 1998, 19(3): 293-298. NIE C Q, CHEN J Y, JIANG H K, et al. Experimental investigation on inception of rotating stall in low-speed axial compressor[J]. Journal of Engineering Thermophysics,1998, 19(3): 293-298 (in Chinese).
[5] HAYNES J M, HENDRICKS G J, EPSTEIN A H. Active stabilization of rotating stall in a three-stage axial compressor[J]. Journal of Turbomachinery, 1994, 116(2):226-239.
[6] TRYFONIDIS M, ETCHEVERS O, PADUANO J D, et al. Prestall behavior of several high-speed compressors[J]. Journal of Turbomachinery, 1995, 117(1):62-80.
[7] WILSON A G, FREEMAN C. Stall inception and development in an axial flow aeroengine[J]. Journal of Turbomachinery, 1994, 116(2): 216-225.
[8] GONG Y. A computational model for rotating stall and inlet distortions in multi-stage compressors[D]. Cambridge: Massachusetts Institute of Technology, 1999.
[9] GONG Y, TAN C S, GORDON K A, et al. A computational model for short wavelength stall inception and development in multistage compressors[J]. Journal of Turbomachinery, 1999, 121(4): 726-734.
[10] GREITZER E M, TAN C S, WISLER D C, et al. Unsteady flow in turbomachines: Where's the beef?[J]. Unsteady Flows in Aeropropulsion, 1994, 40: 1-11.
[11] HENDERSON R E, SHEN I C. The influence of unsteady rotor response on a distorted flow field[J]. Journal of Engineering for Power, 1982, 104(3): 683-691.
[12] HALE A A, DAVIS M W, KNEILE K R. Turbine engine analysis compressor code: TEACC Part I: Technical approach and steady results: AIAA-1994-0148[R]. Reston, VA: AIAA, 1994.
[13] CHALK J C, HALE A A. A three-dimensional compression system model using NPARC: AIAA-1997-0992[R]. Reston, VA: AIAA, 1997.
[14] HALE A,O'BRIEN W. A three-dimensional turbine engine analysis compressor code (TEACC) for steady-state inlet distortion:97-GT-124[R]. New York: ASME, 1997.
[15] CHOI M, VAHDATI M, IMREGUN M. Effects of fan speed on rotating stall inception and recovery[J]. Journal of Turbomachinery, 2011, 133(4): 41013-41018.
[16] HAH C, BERGNER J, SCHIFFER H P. Short length-scale rotating stall inception in a transonic axial compressor: Criteria and mechanisms: GT2006-90045 [R]. New York: ASME, 2006.
[17] GOURDAIN N, BURGUBURU S, LEBOEUF F, et al. Simulation of rotating stall in a whole stage of an axial compressor[J]. Computers & Fluids, 2010, 39(9):1644-1655.
[18] VO H D, TAN C S, GREITZER E M. Criteria for spike initiated rotating stall[J]. Journal of Turbomachinery, 2008, 130(1): 11023-11029.
[19] 付磊, 袁巍, 宋西镇, 等. 跨声速压气机转子叶尖流场旋转不稳定现象的数值研究 [J]. 航空动力学报, 2014, 29(5): 1145-1153. FU L, YUAN W, SONG X Z, et al. Numerical investigation on rotating instability phenomenon in tip flow fluid of transonic compressor rotor [J]. Journal of Aerospace Power, 2014, 29(5): 1145-1153 (in Chinese).
[20] EMMONS H W, PEARSON C E, GRANT H P. Compressor surge and stall propagation[J]. Transactions of ASME, 1955, 77(3): 455-469.
/
〈 | 〉 |