电子电气工程与控制

舰载无人机横侧向着舰控制律设计

  • 张杨 ,
  • 吴文海 ,
  • 汪杰
展开
  • 海军航空工程学院 青岛校区, 青岛 266041

收稿日期: 2017-05-25

  修回日期: 2017-06-27

  网络出版日期: 2017-06-27

基金资助

国家自然科学基金(60674090)

Design of carrier UAV lateral/directional landing control law

  • ZHANG Yang ,
  • WU Wenhai ,
  • WANG Jie
Expand
  • Qingdao Branch, Naval Aeronautical and Astronautical University, Qingdao 266041, china

Received date: 2017-05-25

  Revised date: 2017-06-27

  Online published: 2017-06-27

Supported by

National Natural Science Foundation of China (60674090)

摘要

舰载无人机横侧向控制一直是着舰控制律设计的难点。为了解决着舰横侧向控制的难题,针对舰载无人机的非线性模型采用了反演控制器设计方法,为解决传统反演的计算膨胀问题,引入了指令滤波方法,同时只设计了一个Lyapunov函数证明了稳定性;由于舰载机动力学模型不能精确获得,采用了自适应方法对其进行估计。设计的横侧向着舰控制器,能较好地解决横侧向控制器设计过程中的耦合问题,并且和传统PID进行了仿真对比,证明了所设计的控制律满足了对参考信号跟踪的性能要求。

本文引用格式

张杨 , 吴文海 , 汪杰 . 舰载无人机横侧向着舰控制律设计[J]. 航空学报, 2017 , 38(S1) : 721489 -721489 . DOI: 10.7527/S1000-6893.2017.721489

Abstract

Carrier UAV lateral/directional landing has been one of the difficulties in control design. To solve this problem, the nonlinear model for the carrier UAV is solved by the backstepping method. To solve the ‘problem of expansion’ of traditional backstepping method, the command filtered method is introduced, and only one Lyapunov function is designed to prove the stability. In addition, for the carrier UAV model can not be obtained accurately, the adaptive method is adopted to estimate it. The designed controller can better solve the coupling problem in lateral/directional control. A comparison with the traditional PID simulation shows that the control law in this paper can meet the requirements for the performance of reference signal tracking.

参考文献

[1] ANDERSON M R, CLARK C, DUNGAN G. Flight test maneuver design using a skill- and rule-based pilot model[C]//IEEE International Conference on Systems, Man and Cybernetics. Piscataway,NJ:IEEE Press, 1995: 2682-2687.
[2] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2): 020435. ZHEN Z Y,WANG X H,JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 020435(in Chinese).
[3] SUBRAHMANYAM M B. H-infinity design of F/A-18A automatic Carrier Landing System[J]. Journal of Guidance Control & Dynamics, 2012, 17(1): 187-191.
[4] 刘强, 刘晓川, 刘玉宝. 基于TECS/H_∞的无人机侧向着舰技术研究[J]. 计算机仿真, 2012(4): 84-87. LIU Q, LIU X C, LIU Y B. Study onlateral carrier landing system for UAV based on total energy and H_∞ control[J]. Computer Simulation, 2012(4): 84-87 (in Chinese).
[5] NISHI K, KAMIYAMA T, WADA M, et al. Lateral directional fractional order (PI)π control of a small fixed-wing unmanned aerial vehicles: Controller designs and flight tests[J]. Control Theory & Applications IET, 2011, 5(18): 2156-2167.
[6] 郑峰婴, 龚华军, 王新华. 小型舰载无人机侧向自主着舰引导技术[J]. 南京航空航天大学学报, 2013, 45(1): 82-87. ZHENG F Y, GONG H J, WANG X H. Small carrier UAV lateral autonomous landing system[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(1): 82-87 (in Chinese).
[7] 薛静, 杨亚洁, 刘宇, 等. 基于 L1自适应控制的无人机横侧向控制[J]. 西北工业大学学报, 2015, 33(1): 40-44. XUE J,YANG Y J, LIU Y, et al. Lateral roll angle control of UAV based on L1 adaptive control method[J]. Journal of Northwestern Polytechnical University, 2015, 33(1): 40-44 (in Chinese).
[8] 朱齐丹, 闻子侠, 张智, 等. 舰载机着舰侧回路混合H_∞/H_2模型参考LPV控制[J]. 哈尔滨工程大学学报, 2013, 34(1): 83-91. ZHU Q D, WEN Z X, ZHANG Z, et al. Carrier aircraft landing mixed H_∞/H_2 LPV model reference control during powered approach[J]. Journal of Harbin Engineering University, 2013, 34(1): 83-91 (in Chinese).
[9] 朱齐丹, 王立鹏, 张智,等. 舰载机着舰侧回路时变风险权值矩阵线性变参数预测控制[J]. 控制理论与应用, 2015, 32(1): 101-109. ZHU Q D, WANG L P, ZHANG Z, et al. Aircraft lateral linear parameter varying model predictive control with time varying weight[J]. Control Theory and Applications, 2015, 32(1): 101-109 (in Chinese).
[10] 高丽, 吴文海, 梅丹,等. 侧向自动着舰引导控制L1自适应设计[J]. 飞行力学, 2016, 34(4): 41-45. GAO L, WU W H, MEI D, et al. Design of L1 adaptive controller for lateral-directional automatic carrier landing[J]. Flight Dynamics, 2016, 34(4): 41-45 (in Chinese).
[11] ZHENG F, GONG H, JIANG J, et al. Lateral carrier landing performance affecting factors of small carrier-based UAV[M]. Berlin: Springer Berlin Heidelberg, 2013: 528-540.
[12] LUNGU M. Stabilization and control of a UAV flight attitude angles using the backstepping method[J]. World Academy of Science Engineering & Technology, 2012,6(1): 53-60.
[13] SADATI S H, PARVAR M S, MENHAJ M B, et al. Backstepping controller design using neural networks for a fighter aircraft[J]. European Journal of Control, 2007, 13(5): 516-526.
[14] 路遥, 董朝阳, 王青. 高超声速飞行器自适应反步控制器设计[J]. 航空学报, 2015, 36(3): 970-978. LU Y,DONG C Y, WANG Q. Adaptive backstepping controller design for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 970-978 (in Chinese).
[15] JU H S, TSAI C C. Glidepath command generation and tracking for longitudinal autolanding[J]. World Congress, 2008, 41(2): 1093-1098.
[16] STEVENS B L, LEWIS F L. Aircraft control and simulation[M]. New York: John Wiley, 2003: 80-83.
[17] FARRELL J, POLYCARPOU A. Command filtered backstepping[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1391-1395.
[18] SWARNKAR S, KOTHARI M. A simplified adaptive backstepping control of aircraft lateral/directional dynamics[J]. Ifac Papersonline, 2016, 49(1): 579-584.
[19] GAVILAN F, VAZQUEZ R, ESTEBAN S. Trajectory tracking for fixed-wing UAV using model predictive control and adaptive backstepping[C]//Ifac Workshop on Advanced Control and Navigation for Autonomous Aerospace Vehicles Acnaav, 2015: 132-137.
[20] CHRIF L,KADA Z M. Flight-path tracking control of an aircraft using backstepping controller[J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2015,15(2): 270-276.

文章导航

/