流体力学与飞行力学

超声速压缩拐角激波/边界层干扰动力学模态分解

  • 童福林 ,
  • 李新亮 ,
  • 段焰辉
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 中国科学院 力学研究所 高温气体动力学重点实验室, 北京 100190;
    3. 中国科学院大学 工程科学学院, 北京 100049

收稿日期: 2017-05-02

  修回日期: 2017-06-27

  网络出版日期: 2017-06-27

基金资助

国家自然科学基金(91441103,11372330);国家重点研发计划(2016YFA0401200)

Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp

  • TONG Fulin ,
  • LI Xinliang ,
  • DUAN Yanhui
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    3. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-05-02

  Revised date: 2017-06-27

  Online published: 2017-06-27

Supported by

National Natural Science Foundation of China (91441103,11372330); National Key Research and Development Program of China (2016YFA0401200)

摘要

压缩拐角激波与边界层干扰问题广泛存在于高速飞行器的外部和内部流动中,其非定常复杂流场结构对飞行器气动性能影响显著。动力学模态分析将有助于进一步加深理解激波与边界层干扰流场不同特征频率对应的流动结构及动力学特性,为揭示其复杂流动机理提供参考。本文采用动态模态分解(DMD)方法对来流马赫数为2.9、24°压缩拐角内激波与超声速边界层干扰下的非定常流动进行了模态分析。评估了稀疏改进动态模态分解方法在压缩拐角流动中的适用性,研究了湍流干扰和转捩干扰下典型特征频率对应的动力学模态空间结构差异及其原因,分析了转捩边界层展向非均匀性对低频/高频模态动力学机制的影响规律。研究发现,湍流干扰与转捩干扰下拐角干扰区内均存在两类截然不同的动力学模态:低频模态和高频模态。低频模态结构集中在分离激波及分离泡剪切层的根部,表征为分离泡的大尺度膨胀和收缩运动;高频模态空间分布则以平均声速线附近正负交替结构为主,对应为边界层内不稳定波沿剪切层往下游的传播。转捩边界层的展向结构对低频模态运动特性影响明显,而对高频模态的影响则相对较小。

本文引用格式

童福林 , 李新亮 , 段焰辉 . 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报, 2017 , 38(12) : 121376 -121376 . DOI: 10.7527/S1000-6893.2017.121376

Abstract

Shock wave and boundary layer interactions exist widely in the internal and external flow of high speed vehicles. The complicated unsteady flow field has significant effect on the aerodynamic performance of aircraft. Dynamic modal analyses of unsteady motions are helpful to deeply understand the flow structures and dynamical properties of characteristic frequencies in the interactions, providing information to reveal the complex mechanism of the flow. A modal analysis of the unsteady flow field in shock wave and boundary layer interaction for a 24° compression ramp at a Mach number 2.9 is performed by using Dynamic Mode Decomposition (DMD). The applicability of sparsity-promoting DMD in the compression ramp is systematically evaluated. The differences of and reasons for the spatial structures of the dynamic mode corresponding to characteristic frequencies between turbulent and transitional interactions are studied. The influence of spanwise non-uniformity of the transitional boundary layer on the dynamics mechanism of the high and low frequency modes is analyzed and compared. It is found that low frequency modes are characterized by the separation shock and the foot of separated shear layer, exhibiting the breathing motion of the separation bubble. The spatial structures of high frequency modes are dominated by the alternating structures around the mean sonic line, corresponding to the propagation of instable waves past the shear layer above the separation bubble. Additionally, the spanwise non-uniformity has significant effect on the dynamic properties of low frequency modes, while a little effect on those of high frequency modes.

参考文献

[1] DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal, 1983, 21(12):1628-1634.[2] DUPONT P, HADDAD C, DEBIEVE J F. Space and time organization in a shock induce separated boundary layer[J]. Journal of Fluid Mechanics, 2006, 559:255-277.[3] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:What next?[J]. AIAA Journal, 2001, 39(8):1517-1530.[4] EDWARD J R. Numerical simulation of shock/boundary layer interactions using time dependent modeling techniques:A survey of recent results[J]. Progress in Aerospace Sciences, 2008, 44(6):447-465.[5] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99.[6] LEE C B, WANG S. Study of the shock motion in a hypersonic shock system/turbulent boundary layer interaction[J]. Experiments in Fluids, 1995, 19(3):143-149.[7] CLEMENS N T, NARAYANASWAMY V. Low frequency unsteadiness of shock wave turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1):469-492.[8] GANAPATHISUBRAMANI B, CLEMENS N T, DO-LLING D S. Low frequency dynamics of shock induced separation in a compression ramp interaction[J]. Journal of Fluid Mechanics, 2009, 636:397-425.[9] PRIEBE S, MARTIN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699(5):1-49.[10] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656(10):5-28.[11] SCHMID P J. Application of the dynamic mode decomposition to experimental data[J]. Experiments in Fluids, 2011, 50(4):1123-1130.[12] ROWLEY C W, MEZIC I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641:115-127.[13] WYNN A, PEARSON D, GANAPATHISUBRAMANI B, et al. Optimal mode decomposition for unsteady flows[J]. Journal of Fluid Mechanics, 2013, 733(2):473-503.[14] JOVANOVIC M R, SCHMID P J, NICHOLS J W. Sparsity promoting dynamic mode decomposition[J]. Physics of Fluids, 2014, 26(2):024103.[15] GRILLI M, SCHMID P J. Analysis of unsteady behaviour in shock wave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700(6):16-28.[16] STEPHAN P, TU J H, ROWLEY C W, et al. Low-frequency dynamics in a shock-induced separated flow[J]. Journal of Fluid Mechanics, 2016, 807:441-477.[17] TONG F L, TANG Z G, YU C P, et al. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls[J]. Journal of Turbulence, 2017, 18(6):569-588.[18] STANTNIKOV V, SAYADI T, MEINKE M, et al. Analysis of pressure perturbation sources on a generic space launcher after-body in supersonic flow using zonal turbulence modeling and dynamic mode decomposition[J]. Physics of Fluids, 2015, 27(1):016103.[19] 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9):2679-2689. KOU J Q, ZHANG W W, GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2679-2689(in Chinese).[20] SAYADI T, SCHMID P J, NICHOLS J W, et al. Reduced-order representation of near-wall structures in the late transitional boundary layer[J]. Journal of Fluid Mechanics, 2014, 748(2):278-301.[21] DUCOIN A, LOISEAU J C, ROBINET J C. Numerical investigation of the interaction between laminar to turbulent transition and the wake of an airfoil[J]. European Journal of Mechanics B/Fluids, 2016, 57:231-248.[22] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):030802.[23] ZHANG C H, ZHU Y D, CHEN X, et al. Transition in hypersonic boundary layers[J]. AIAA Journal, 2016, 54(10):1-11.[24] 童福林, 唐志共, 李新亮, 等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016, 37(12):3588-3604. TONG F L, TANG Z G, LI X L, et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3588-3604(in Chinese).[25] 童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析[J]. 力学学报, 2017, 49(1):93-104. TONG F L, LI X L, TANG Z G. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1):93-104(in Chinese).[26] MARTIN M P, TAYLOR E M, WU M. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1):270-289.[27] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6):065113.[28] RINGUETTE M, WU M, MARTIN M P. Low Reynolds number effects in a Mach 3 shock/turbulent boundary layer interaction[J]. AIAA Journal, 2008, 46(7):1884-1887.[29] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.[30] WU M, MARTIN M P. Analysis of shock motion in shock wave and turbulent boundary layer interaction using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2008, 594:71-83.
文章导航

/