针对低雷诺数翼型特殊的气动特性,采用基于动网格的非定常数值模拟方法,研究翼型表面不同弦向位置的局部蒙皮以不同频率及振幅振动时对低雷诺数翼型气动特性及流场结构的影响,揭示蒙皮振动增升减阻的机理。研究表明,在低雷诺数条件下局部蒙皮振动可有效提高翼型气动特性,与刚性翼型相比蒙皮局部振动可使翼型升力系数提高,阻力系数降低,升阻比提高。振动位置对翼型气动特性及流场结构有显著的影响,振动表面位于翼型前缘附近或位于层流分离泡中心时可有效控制翼型层流分离,从而提高翼型气动特性。振动频率对翼型表面层流分离及转捩位置均有显著的影响,随着振动频率增加,翼型气动特性出现最优值。与刚性翼型相比,表面振动使翼型转捩位置略向上游移动,摩擦阻力增加,但振动使等效翼型相对厚度减小,压差阻力明显减小。在小幅振动范围内,随着振幅增加,流场非定常特性更加显著,翼型升阻比增加。
The unsteady numerical simulation method based on the dynamic mesh is used to study the effects of skin oscillation at different locations and with different frequencies and amplitudes on the aerodynamic characteristics and flow field structures of the airfoil at low Reynolds number, and reveal the mechanism of lift augmentation and drag reduction. The research shows that the local oscillation of the airfoil surface can improve the aerodynamic characteristics of the airfoil at low Reynolds number. Compared with that of the rigid airfoil, local oscillation of the airfoil surface can improve the lift coefficient, reduce the drag coefficient and improve the lift to drag ratio of the airfoil. Locations of oscillation have significant effects on the aerodynamic characteristics and flow field structures of the airfoil. When the oscillation surface is at the leading edge or the center of the laminar separation bubble, oscillation can control the laminar separation of the airfoil effectively, so the aerodynamic characteristics of the airfoil are improved. Frequencies of oscillation have significant effects on locations of laminar separation and transition of the airfoil. With the increase of the frequency, the aerodynamic characteristics of the airfoil have the optimal value. Compared with the rigid airfoil, oscillation makes the transition move upstream and the viscous drag increased, but makes the equivalent relative thickness of the airfoil decreased and the pressure drag reduced observably. In the range of small amplitudes, with the increase of the amplitude, the unsteady characteristics are more significant and the lift to drag ratio increases.
[1] COLOZZA A, DOLCE J L. High-altitude, long-endurance airships for coastal surveillance:NASA/TM-2005-213427[R]. Washington, D.C.:NASA, 2005.[2] DONGLI M, YANPING Z, YUHANG Q. Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number[J]. Chinese Journal of Aeronautics, 2015, 28(4):1003-1015.[3] SELIG M S, GUGLIELMO J J, BROERN A P, et al. Experiments on airfoils at low Reynolds numbers[C]//34th Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 1996.[4] 刘强, 刘周, 白鹏. 低雷诺数翼型蒙皮主动振动气动特性及流场结构数值研究[J]. 力学学报, 2016, 48(2):269-277. LIU Q, LIU Z, BAI P. Numerical study about aerodynamic characteristics and flow field structures for a skin of airfoil with active oscillation at low Reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2):269-277(in Chinese).[5] GREENBLATT D, WYGNANSKI I J. The control of flow separation by periodic excitation[J]. Progress in Aerospace Sciences, 2000, 36(7):487-545.[6] REDHA W, DAVID B. Suction effects on the transition and reattachment of a transitional bubble[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA,2013.[7] WRIGHT M C M, NELSON P A. Wind tunnel experiments on the optimization of distributed suction for laminar flow control[J]. Journal of Aerospace Engineering, 2001, 215(6):343-354.[8] REDHA W, DAVID B. Effects of distributed suction on an airfoil at low Reynolds number[C]//40th Fluid Dynamics Conference and Exhibit. Reston, VA:AIAA, 2010.[9] LIAN Y S, WEI S. Membrane wing aerodynamics for micro air vehicles[J]. Progress in Aerospace Sciences, 2003, 39(6):425-465.[10] 康伟, 刘磊, 徐敏. 低雷诺数下翼面局部振动增升机理研究[J]. 航空学报, 2015, 36(11):3557-3566. KANG W, LIU L, XU M. Lift enhancement mechanism for local oscillation of airfoil surface at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3557-3566(in Chinese).[11] GORDNIER R E. High fidelity computational simulation of a membrane wing airfoil[J]. Journal of Fluids & Structures, 2009, 25(5):897-917.[12] SONG A, BREUER K. Dynamics of a compliant membrane as related to mammalian flight[C]//AIAA Aerospace Sciences Meeting & Exhibit. Reston, VA:AIAA, 2007.[13] ROJRATSIRIKUL P, WANG Z, GURSUL I. Unsteady fluid-structure interactions of membrane airfoils at low Reynolds numbers[M]. Berlin:Springer, 2010:297-310.[14] 裘进浩, 李大伟, 聂瑞. 增加翼型升力的局部振动流动控制技术[J]. 南京航空航天大学学报, 2012, 44(5):638-644. QIU J H, LI D W, NIE R. Vibration flow control technology for increasing lift of airfoil[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5):638-644(in Chinese).[15] 叶正寅, 谢飞. 弹性振动对翼型失速迎角附近流场的影响[J]. 航空学报, 2006, 27(6):1028-1032. YE Z Y, XIE F. The effects of elastic vibration on the flow field near stall-incidence of the airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1028-1032(in Chinese).[16] QIAO Y H, MA D L, LI Z. Unsteady numerical simulation of the mutual disturbance between propeller and wing[J]. Transactions of the Japan Society for Aeronautical & Space Sciences, 2015, 58(5):298-306.[17] LANGTRY R, MENTER F. Transition modeling for general CFD applications in aeronautics[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2005.[18] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.[19] ROBERT J M, BETTY S W, BETTY F M. Experimental results for the Eppler 387 airfoil at low Reynolds numbers in the Langley low-turbulence pressure tunnel:NASA/TM-4062[R]. Washington, D.C:NASA Langley Research Center, 1988.[20] PIZIALI R A. 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall[R]. Washington, D. C.:NASA, 1994.[21] BLOM F J. Considerations on the spring analogy[J]. International Journal for Numerical Methods in Fluids, 2000, 32(6):647-668.[22] 白鹏, 崔尔杰, 李锋. 对称翼型低雷诺数小攻角升力系数非线性现象研究[J]. 力学学报, 2006, 38(1):1-8. BAI P, CUI E J, LI F. Study of the non-linear lift coefficient of the symmetric airfoil at low Reynolds number near the 0° angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):1-8(in Chinese).