收稿日期: 2017-04-27
修回日期: 2017-06-26
网络出版日期: 2017-06-26
基金资助
国家自然科学基金(91541117)
Applications of shock-fitting technique for compressible flow in cell-centered finite volume methods
Received date: 2017-04-27
Revised date: 2017-06-26
Online published: 2017-06-26
Supported by
National Natural Science Foundation of China (91541117)
发展了一种基于格心型有限体积方法(FVM)的激波装配算法。通过定义网格节点属性可以灵活调用激波装配和激波捕捉计算方法。在使用激波装配方法时,激波节点运动速度和下游运动速度通过Rankine-Hugoniot (R-H)关系式获得,同时采用非结构动网格技术描述激波的运动以及调整其他网格节点的位置。流过激波面元的通量为上游单元的基本通量,物理概念更加清晰,通量计算也更为准确。在计算过程中,网格节点属性可以发生变化,以此实现对带有拓扑变化流场的描述。数值试验表明:本文提出的计算方法不但具有较高的计算精度,同时能有效地避免由于捕捉激波而出现的数值问题。
关键词: 激波装配; 非结构动网格; 有限体积法(FVM); 计算流体力学; 可压缩流动
邹东阳 , 刘君 , 邹丽 . 可压缩流动激波装配在格心型有限体积法中的应用[J]. 航空学报, 2017 , 38(11) : 121363 -121363 . DOI: 10.7527/S1000-6893.2017.121363
A shock-fitting technique for cell-centered Finite Volume Method (FVM) is developed in this work. It is flexible to switch among shock-fitting and shock-capturing methods by changing the nature of grid nodes, which are defined as shock nature and common nature. In the shock-fitting method, velocities of shock nodes and downstream states are obtained by solving Rankine-Hugoniot (R-H) relations. The unstructured dynamic grid technique is used for shock tracking and updating the positions of other common nodes. The flux across a shock face equals the basic flux of its upstream cell. During the computational process, the nature of the nodes is allowed to change. Thus, it is easier to apply this method in complex problems, even with topological change. The numerical results show the proposed method is not only of high accuracy, but also able to avoid the troubles in shock-capturing.
[1] PIROZZOLI S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011, 43(1):163-194.
[2] MORETTI G, SALAS M D. Numerical analysis of viscous one-dimensional flows[J]. Journal of Computational Physics, 1970, 5(3):487-506.
[3] SALAS M D. Shock fitting method for complicated two-dimensional supersonic flows[J]. AIAA Journal, 1976, 14(5):583-588.
[4] 贺国宏. 三阶ENN格式及其在高超声速黏性复杂流场求解中的应用[D]. 绵阳:中国空气动力研究与发展中心,1994:6-11. HE G H. Third-order ENN scheme and its application to the calculation of complex hypersonic viscous flows[D]. Mianyang:China Aerodynamics Research and Development Center, 1994:6-11(in Chinese).
[5] LAX P D. Hyperbolic system of conservation laws and the mathematical theory of shock waves[C]//SIAM Regional series on Applied Mathematics, 1973.
[6] HARTEN A. High resolution schemes for hyperbolic conservative laws[J]. Journal of Computational Physics, 1983, 49(3):357-393.
[7] OSHER S, CHAKRAVARTHY S. High resolution schemes and the entropy condition[J]. SIAM Journal on Numerical Analysis, 1984, 21(5):955-984.
[8] CHAKRAVARTHY S, OSHER S. A new class of high accuracy TVD scheme for hyperbolic conservation laws:AIAA-1985-0363[R]. Reston, VA:AIAA, 1985.
[9] YEE H C. Upwind and symmetric shock-capturing schemes:NASA TM-89464[R]. Washington, D.C.:NASA, 1987.
[10] ROE P L. Generalized formulation of TVD Lax-Wendroff schemes:ICASE Report No. 84-53[R]. 1984.
[11] LIU X, DENG X G, MAO M L. High-order behaviors of weighted compact fifth-order nonlinear scheme[J]. AIAA Journal, 2007, 45(8):2093-2097.
[12] QIU J X, SHU C W. On the construction, comparison and local characteristic decomposition for high order central WENO schemes[J]. Journal of Computational Physics, 2002, 183(1):187-209.
[13] ARORA M, ROE P L. On post-shock oscillations due to shock capturing schemes in unsteady flows[J]. Journal of Computational Physics, 1997, 130(1):25-40.
[14] MORETTI G. Thirty-six years of shock-fitting[J]. Computers & Fluids, 2002, 31(4-7):719-723.
[15] RAWAT P S, ZHONG X. On high-order shock-fitting and front-tracking schemes for numerical simulation of shock-disturbance interactions[J]. Journal of Computational Physics, 2010, 229(19):6744-6780.
[16] PRAKASH A, PARSONS N, WANG X, et al. High-order shock-fitting methods for direct numerical simulation of hypersonic flow with chemical and thermal nonequilibrium[J]. Journal of Computational Physics, 2011, 230(23):8474-8507.
[17] KOPRIVA D A. Shock-fitted multidomain solution of supersonic flows[J]. Computer Methods in Applied Mechanics & Engineering, 1999, 175(3-4):383-394.
[18] PACIORRI R, BONFIGLIOLI A. A shock-fitting technique for 2D unstructured grids[J]. Computers & Fluids, 2009, 38(3):715-726.
[19] IVANOV M S, BONFIGLIOLI A, PACIORRI R, et al. Computation of weak steady shock reflections by means of an unstructured shock-fitting solver[J]. Shock Waves, 2010, 20(4):271-284.
[20] PACIORRI R, BONFIGLIOLI A. Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique[J]. Journal of Computational Physics, 2011, 230(8):3155-3177.
[21] BONFIGLIOLI A, GROTTADAUREA M, PACIORRI R, et al. An unstructured, three-dimensional, shock-fitting solver for hypersonic flows[J]. Computers & Fluids, 2013, 73(6):162-174.
[22] BONFIGLIOLI A, PACIORRI R, CAMPOLI L. Unsteady shock-fitting for unstructured grids[J]. International Journal for Numerical Methods in Fluids, 2016, 81(4):245-261.
[23] MORETTI G, ABBETT M. A time-dependent computational method for blunt body flows[J]. AIAA Journal, 1966, 4(12):2136-2141.
[24] 刘君, 邹东阳, 徐春光. 基于非结构动网格的非定常激波装配方法[J]. 空气动力学学报, 2015, 33(1):10-16. LIU J, ZOU D Y, XU C G. An unsteady shock-fitting technique based on unstructured moving grids[J]. Acta Aerodynamica Sinica, 2015, 33(1):10-16(in Chinese).
[25] 刘君, 邹东阳, 董海波. 动态间断装配法模拟斜激波壁面反射[J]. 航空学报, 2016, 37(3):836-846. LIU J, ZOU D Y, DONG H B. A moving discontinuity fitting technique to simulate shock waves impinged on a straight wall[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):836-846(in Chinese).
[26] 刘君, 徐春光, 白晓征. 有限体积方法和非结构动网格[M]. 北京:科学出版社, 2016. LIU J, XU C G, BAI X Z. Finite volume methods and unstructured dynamic grids technique[M]. Beijing:Science Press, 2016(in Chinese).
[27] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8):1381-1388.
[28] LIU J, BAI X Z, GUO Z. A new method for transferring flow information among meshes[J]. Computational Fluid Dynamics Journal, 2007, 15(4):509-514.
[29] LYUBIMOV A N, RUSANOV V V. Gas flow past blunt body, Part Ⅱ Table of the gasdynamic functions:NASA TT F-715[R]. Washington, D.C.:NASA, 1973.
[30] WEEKS T M, DOSANJH D S. Sound generation by shock-vortex interaction[J]. AIAA Journal, 1967, 5(4):660-669.
[31] GRASSO F, PIROZZOLI S. Shock-wave-vortex interactions:Shock and vortex deformations, and sound production[J]. Theoretical and Computational Fluid Dynamics, 2000, 13(6):421-456.
/
〈 | 〉 |