收稿日期: 2016-12-26
修回日期: 2017-06-26
网络出版日期: 2017-06-26
基金资助
民机专项(MIZ-2015-F-009);陕西省科技统筹(2015KTCQ01-78)
Aerodynamic optimization design of diamond-wing configuration UAV airfoil based on radar antenna installation
Received date: 2016-12-26
Revised date: 2017-06-26
Online published: 2017-06-26
Supported by
Civil Aircraft Project (MIZ-2015-F-009); Shaanxi Province Science and Technology Project (2015KTCQ01-78)
以菱形翼布局高空长航时(HALE)传感器无人机研究为背景,分析了翼型内部安装平面相控阵雷达天线的基本原理。通过推导雷达探测性能的估算方程,建立了在翼型中安装平面相控阵雷达天线的数学模型。采用数值模拟的方法,对典型雷诺数下的RAE2822翼型的气动特性进行了研究并与试验数据进行了对比,验证了使用有限体积法k-ω SST (Shear Stress Transport)湍流模型求解雷诺平均Navier-Stokes方程在这一状态下的可靠性和适用性;同时对不同厚度的NACA 64A系列翼型的流场结构和流动机理进行了分析,在此基础上提出了一种满足平面相控阵雷达天线安装情况下翼型的优化设计思想。优化结果验证了这一设计思想的可行性。
孙俊磊 , 王和平 , 周洲 , 雷珊 . 基于天线安装的菱形翼无人机翼型优化设计[J]. 航空学报, 2017 , 38(11) : 121072 -121072 . DOI: 10.7527/S1000-6893.2017.121072
To develop High-Altitude Long-Endurance (HALE) diamond-wing configuration SensorCraft, the installation of the planar phased array radar antenna inside the airfoil is studied. A mathematic model for the planar phased array radar antenna is established by solving the equation for radar performance estimation. To verify the reliability and applicability of the k-ω SST (Shear Stress Transport) turbulence model and the finite volume method used to solve the Reynolds-averaged Navier-Stokes equations, the aerodynamic characteristics of the supercritical airfoil RAE2822 with typical Reynolds number are studied by numerical simulation, and the results are compared with the experimental data. An analysis of the flow field structure and flow mechanism of NACA 64A series airfoil with different thickness is also carried out. On the basis of above studies, an optimization design method for the airfoil to meet the installation requirements of the planar phased array radar antenna is presented. The design results validate the feasibility of our optimization method.
[1] RASMUSSEN C C, CANFIELD R A, BLAIR M. Joined-wing sensor-craft configuration design[J]. Journal of Aircraft, 2006, 43(5):1470-1478.
[2] MARTINEZ J, FLICK P, PERDZOCK J, et al. An overview of sensorcraft capabilities and key enabling technologies:AIAA-2008-7185[R]. Reston, VA:AIAA, 2008.
[3] WOLKOVITCH J. The joined wing:An overview[J]. Journal of Aircraft, 1986, 23(3):161-178.
[4] KROO I, SMITH S, GALLMAN J. Aerodynamic and structural studies of joined-wing aircraft[J]. Journal of Aircraft, 1991, 28(1):74-81.
[5] LIVNE E. Aeroelasticity of joined-wing airplane configurations:Past work and future challenges-A survey:AIAA-2001-1370[R]. Reston, VA:AIAA, 2001.
[6] CRAFT R L. Drag estimates for the joined-wing sensor craft[D]. Dayton, OH:Wright-Patterson Air Force Base, 2005.
[7] LEDOUX S, VASSBERG J, FATTA G, et al. Aerodynamic cruise design of a joined wing sensorcraft:AIAA-2008-7190[R].Reston, VA:AIAA, 2008.
[8] 曹晨. 机载相控阵PD雷达性能分析中的重要问题[J]. 现代雷达,2008, 30(6):14-16. CAO C.Problems in airborne phased-array PD radar performance analysis[J]. Modern Radar, 2008, 30(6):14-16(in Chinese).
[9] 张晓波, 曹晨. 机载预警雷达最优探测波长研究[J]. 中国电子科学研究院学报, 2011, 6(3):263-266. ZHANG X B, CAO C. A study on airborne early warning radar optimal detection wavelength[J]. Journal of CAEIT, 2011, 6(3):263-266(in Chinese).
[10] 李相如, 曹晨. 机载预警雷达搜索参数研究[J]. 中国电子科学研究院学报, 2015, 10(4):406-410. LI X R, CAO C.The research on airborne early warning radar search parameters[J]. Journal of CAEIT, 2015, 10(4):406-410(in Chinese).
[11] 王科雷, 周洲, 许晓平, 等. 超临界翼型低雷诺数流动分析及优化设计[J]. 航空学报, 2015,36(10):3275-3283. WANG K L, ZHOU Z, XU X P, et al. Flow characteristics analysis and optimization design of supercritical airfoil at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(10):3275-3283(in Chinese).
[12] 王科雷, 周洲, 甘文彪, 等. 太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014, 32(2):163-168. WANG K L, ZHOU Z,GAN W B, et al. Studying aerodynamic performances of the low-Reynolds-number airfoil of solar energy UAV[J]. Journal of Northwestern Polytechnical University, 2014, 32(2):163-168(in Chinese).
[13] GREER D, HAMORY P, EDWARDS C, et al. Design and predictions for high-altitude (low Reynolds number) aerodynamic flight experiment[J]. Journal of Aircraft, 2000, 37(4):684-689.
[14] 左林玄, 王晋军. 低雷诺数翼型的优化设计[J]. 兵工学报, 2009,30(8):1073-1077. ZUO L X, WANG J J. Airfoil design optimization at low Reynolds number[J]. Acta Armamentarii, 2009,30(8):1073-1077(in Chinese).
[15] WANG Z Y, ZHU X P, ZHOU Z, et al. A numerical research on aerodynamic interference of diamond-wing sensor-craft[C]//7th Asia-Pacific International Symposium on Aerospace Technology, 2015:545-552.
[16] 孙俊磊,王和平,周洲,等.菱形连翼布局俯仰力矩非线性特性数值分析[J]. 北京航空航天大学学报,2017,43(8):1567-1576. SUN J L, WANG H P, ZHOU Z, et al. Numerical analysis of pitching moment non-linear characteristics of diamond joined-wing configuration[J]. Journal of Beijing University of Aeronautics and Astronautics,2017,43(8):1567-1576(in Chinese).
[17] 杨青真,张仲寅.超临界层流机翼边界层及气动特性分析[J].航空学报,2004,25(5):438-442. YANG Q Z, ZHANG Z Y. Analysis of the boundary layer and aerodynamic characteristics of a supercritical laminar wing[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5):438-442(in Chinese).
[18] SKOLNIK M I.雷达手册[M]. 北京:电子工业出版社,2003:556-558. SKOLNIK M I. Radar handbook[M]. Beijing:Publishing House of Electronics Industry, 2003:556-558(in Chinese).
[19] COOK P H, LOCK R C. Aerofoil RAE2822-pressure distributions and boundary layer and wake measurements:AGARD-AR-138[R]. Brussels:AGARD, 1979.
[20] HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7):407-412.
[21] 王建军, 高正红. HicksHenne翼型参数化方法分析及改进[J]. 航空计算技术, 2010, 40(4):46-49. WANG J J,GAO Z H. Analysis and improvement of HicksHenne airfoil parameterization method[J]. Aeronautical Computing Technique, 2010, 40(4):46-49(in Chinese).
[22] 王小平,曹立明.遗传算法:理论、应用与软件实现[M]. 西安:西安交通大学出版社,2002:11-17. WANG X P,CAO L M. Genetic algorithm:Theory, application and realization[M]. Xi'an:Xi'an Jiaotong University Press,2002:11-17(in Chinese).
[23] 赖宇阳. Isight参数优化理论与实例详解[M].北京:北京航空航天大学出版社,2012:117-127. LAI Y Y. Optimization theory and detailed examples of Isight[M]. Beijing:Beihang University Press,2012:117-127(in Chinese).
[24] LEVIN O, WEI S. Optimization of a flexible low Reynolds number airfoil:AIAA-2001-0125[R]. Reston,VA:AIAA, 2001.
/
〈 | 〉 |