收稿日期: 2017-03-27
修回日期: 2017-06-23
网络出版日期: 2017-06-23
基金资助
国家"973"计划(2014CB744804)
Characteristics of laminar separation flutter of two-dimensional airfoils at low Reynolds numbers
Received date: 2017-03-27
Revised date: 2017-06-23
Online published: 2017-06-23
Supported by
National Basic Research Program of China (2014CB744804)
低雷诺数范围内的层流分离颤振现象伴随着强气动非线性和复杂的黏性效应,因此对该现象进行预测和分析具有很高的难度。层流分离颤振会显著地影响部分飞行生物和微型飞行器的飞行稳定性,所以有必要探究其触发和维持振动的机制,以便可以在飞行中抑制甚至避免该类型颤振的发生。采用非定常雷诺平均Navier-Stokes (RANS)方程和γ-Reθt转捩模型对翼型表面的复杂黏性流动现象进行数值模拟,通过耦合结构运动方程,建立时域气动弹性分析方法,其中结构运动方程采用基于预估-校正技术的四阶隐式Adams线性多步法进行时域推进求解。采用该气动弹性分析方法对NACA0012翼型的层流分离颤振响应进行数值模拟,结果表明,该方法可以准确地模拟层流分离颤振现象。对不同湍流度下的层流分离颤振特性进行对比研究,结合瞬时流场结果分析,发现层流分离是触发和维持层流分离颤振的主要因素,高频的尾涡脱落仅增加了气动的非线性,而湍流对此类极限环振荡(LCO)具有一定程度的抑制作用。对比具有不同厚度和弯度的翼型的层流分离颤振响应,发现适当地减小翼型厚度或者增大翼型弯度可以抑制层流分离颤振。
李国俊 , 白俊强 , 唐长红 , 刘南 , 乔磊 . 低雷诺数下二维翼型层流分离颤振特性[J]. 航空学报, 2017 , 38(11) : 121280 -121280 . DOI: 10.7527/S1000-6893.2017.121280
Highly nonlinear and complex viscous effects occur in laminar separation flutter at low Reynolds numbers, so it is very difficult to predict and analyze this phenomenon. However, this phenomenon can affect the flight stability of some flying animals and micro-air vehicles significantly. Therefore, it is essential for us to investigate the mechanisms of triggering and sustaining oscillations, in order to suppress and even avoid this type of flutter during flight. The unsteady Reynolds Averaged Navier-Stokes (RANS) equation and γ-Reθt transition model are used to simulate the complex viscous flow phenomena, and are coupled with the structure motion equation to establish the time domain aeroelastic analysis method. The solution for the time domain is the fourth order implicit Adams linear multi-step method, which is based on the prediction-correction method. This aeroelastic analysis method is used to simulate the laminar separation flutter responses of the NACA0012 airfoil. The results indicate that this method can simulate laminar separation flutter accurately. The characteristics of laminar separation flutter at different turbulence intensities have been compared and analyzed. It can be found from transient flow results that laminar separation plays a critical role in initiating and sustaining pitching oscillations, and the shedding vortex with high frequencies enhance only nonlinearity of aerodynamics. Turbulence can inhibit Limit Cycle Oscillation (LCO) to some extent. A comparison of the responses of laminar separation flutter of the airfoils of different thicknesses and cambers shows that laminar separation flutter can be suppressed when the thickness of the airfoil decreases or the camber of the airfoil increases properly.
[1] 田方宝. 模拟生物运动的流固耦合数值研究[D]. 合肥:中国科学技术大学, 2011:1-5. TIAN F B. Numerical investigation of bio-inspired flow-structure interaction[D]. Hefei:University of Science and Technology of China, 2011:1-5(in Chinese).
[2] POIREL D, METIVIER V, DUMAS G. Computational aeroelastic simulations of self-sustained pitch oscillations of a NACA0012 at transitional Reynolds numbers[J]. Journal of Fluids and Structures, 2011, 27(8):1262-1277.
[3] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):1-21.
[4] VAN DE VOOREN A I, BERGH H. Spontaneous oscillations of an aerofoil due to instability of the laminar boundary layer[R]. Amsterdam:National Luchtvaart Laboratorium, 1951.
[5] LAMBOURNE N C. An experimental investigation on the flutter characteristics of a model flying wing[R]. London:Her Majesty's Stationery Office, 1952.
[6] SHYY W, LIAN Y S, TANG J, et al. Aerodynamics of low Reynolds number flyers[M]. Cambridge:Cambridge University Press, 2008:29-45.
[7] POIREL D, HARRIS Y, BENAISSA A. Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers[J]. Journal of Fluids and Structures, 2008, 24(5):700-719.
[8] WANG B Y, POIREL D, YUAN W X, et al. Numerical simulation of self-sustained oscillations of an airfoil at a transitional Reynolds number using high-order schemes:AIAA-2011-2139[R]. Reston, VA:AIAA, 2011.
[9] YUAN W X, POIREL D, WANG B Y, et al. Simulation of airfoil limit-cycle oscillations of transitional Reynolds numbers:AIAA-2012-0041[R]. Reston, VA:AIAA, 2012.
[10] YUAN W X, POIREL D, WANG B Y. Simulations of pitch-heave limit-cycle oscillations at a transitional Reynolds number[J]. AIAA Journal, 2013, 51(7):1-17.
[11] METIVIER V, DUMAS G, POIREL D. Aeroelastic dynamics of a NACA 0012 airfoil at transitional Reynolds numbers[C]//AIAA Fluid Dynamics Conference. Reston, VA:AIAA, 2013.
[12] LAPOINTE S, DUMAS G. Improved numerical simulations of self-sustained oscillations of a NACA0012 with transition modeling[C]//AIAA Fluid Dynamics Conference & Exhibit. Reston, VA:AIAA, 2013.
[13] 吴钦,王国玉,黄彪. 绕振荡水翼流动及其转捩特性的数值计算研究[J]. 力学学报, 2014, 46(1):1-10. WU Q, WANG G Y, HUANG B. Numerical methods and transition investigation of transient flows around a pitching hydrofoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1):1-10(in Chinese).
[14] YUAN W X, POIREL D, WANG B Y, et al. Effect of freestream turbulence on airfoil limit-cycle oscillations at transitional Reynolds numbers[J]. Journal of Aircraft, 2015, 52(4):1-12.
[15] 乔磊. 考虑转捩判定的分离流动数值模拟研究[D]. 西安:西北工业大学,2013:1-20. QIAO L. Numerical simualtion of separation flow incorporating transition modeling[D]. Xi'an:Northwestern Polytechnical University, 2013:1-20(in Chinese).
[16] MENTER F R, LANGTRY R B, LIKKI S R, et al. Correlation-based transition model using local variables, Part I-Model Formulation[C]//Proceedings of ASME Turbo Expo 2004, Power for Land, Sea, and Air. New York:ASME, 2004.
[17] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:University Stuttgart, 2006:1-80.
[18] 叶正寅, 张伟伟, 史爱明, 等. 流固耦合力学基础及其应用[M]. 哈尔滨:哈尔滨工业大学出版社, 2010:171-173. YE Z Y, ZHANG W W, SHI A M, et al. Fundamentals of fluid-structure coupling and its application[M]. Harbin:Harbin Institute of Technology Press, 2010:171-173(in Chinese).
[19] MOHAMMED A A, WAQAR A, ERWIN S, et al. A review on aerodynamics of non-flapping bird wings[J]. Journal of Aerospace Technology & Management, 2016, 8(1):8-17.
[20] SHYY W, LIAN Y, TANG J, et al. Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications[J]. Acta Mechanica Sinica, 2008, 24(4):351-373.
[21] 杨文青, 宋笔锋, 宋文萍, 等. 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J]. 实验流体力学, 2015, 29(3):1-10. YANG W Q, SONG B F, SONG W P, et al. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):1-10(in Chinese).
/
〈 |
|
〉 |