流体力学与飞行力学

基于旋转轴向阵列的风扇宽频噪声实验

  • 许坤波 ,
  • 乔渭阳 ,
  • 霍施宇 ,
  • 程颢颐 ,
  • 仝帆
展开
  • 1. 西北工业大学 动力与能源学院, 西安 710072;
    2. 航空工业飞机强度研究所 三十二室, 西安 710065

收稿日期: 2017-01-15

  修回日期: 2017-06-12

  网络出版日期: 2017-06-12

基金资助

国家自然科学基金(51476134);中国-欧盟航空科技国际合作项目(688971)

Experimental of fan broadband noise determination based on rotating axial arrays

  • XU Kunbo ,
  • QIAO Weiyang ,
  • HUO Shiyu ,
  • CHENG Haoyi ,
  • TONG Fan
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China;
    2. The 32 nd Research Laboratory, AVIC Aircraft Strength Research Institute, Xi'an 710065, China

Received date: 2017-01-15

  Revised date: 2017-06-12

  Online published: 2017-06-12

Supported by

National Natural Science Foundation of China (51476134); China-European Union International Cooperation Project on Aviation Science (688971)

摘要

航空发动机降噪研究迫切需要一种叶轮机械管道内宽频噪声测量方法来指导降噪设计。本文通过对阵列测量的声压信号进行互相关分析,得到管道内顺流和逆流传播的模态声功率结果。安装在风扇实验台进口段的传声器阵列由2排周向间隔180°的轴向阵列组成,每排阵列有14个等间距的传声器。阵列安装在可周向旋转的测量段上,实验中测量段每隔6°旋转一次,共获得840个测点位置的声场信号。结果表明入射波与反射波最大可相差10 dB。模态分解结果表明,转静干涉模态是转子通过频率及其谐频处的主导模态。利用不同参考信号计算出的声场结果相同,说明该实验测试方法对参考信号位置没有特殊要求,进一步说明该方法有很好的适用性。

本文引用格式

许坤波 , 乔渭阳 , 霍施宇 , 程颢颐 , 仝帆 . 基于旋转轴向阵列的风扇宽频噪声实验[J]. 航空学报, 2017 , 38(11) : 121132 -121132 . DOI: 10.7527/S1000-6893.2017.121132

Abstract

To reduce aircraft engine noise, a measurement technique is urgently needed for broadband noise determination inside the turbomachinery duct to guide noise reduction design. In this paper, results of the sound power propagating upstream and downstream are determined with cross-correlation analysis of sound pressure. The microphone arrays installed upstream of the fan rig consist of 2 axial arrays with circumferential interval of 180°, with each array having 14 equidistant microphones. Arrays are installed on a rotating duct. In the experiment, the duct rotates once per 6°, and the sound pressure data of 840 positions in total are acquired. The incident sound waves can be as much as 10 dB higher than the reflected sound waves. The decomposed modal results show that rotor-stator interaction modes are the dominant modes at blade passing frequency and its harmonics. The decomposed results are consistent when different sensors are used as reference signals and thus this experimental method is not sensitive to the reference signal position, showing good applicability of the method.

参考文献

[1] 乔渭阳.航空发动机气动声学[M]. 北京:北京航空航天大学出版社,2010:1-8. QIAO W Y. Aero-engine aeroacoustics[M]. Beijing:Beijing University of Aeroacoustics & Astronautics Press, 2010:1-8(in Chinese).
[2] TYLER J M, SOFRIN T G. Axial flow compressor noise studies[J]. Transactions of the Society of Automotive Engineers, 1962, 70(1):309-332.
[3] MORFEY C L. Rotating pressure patterns in ducts:Their generation and transmission[J]. Journal of Sound and Vibration, 1964, 1(1):60-87.
[4] MORFEY C L. Sound transmission and generation in ducts with flow[J]. Journal of Sound and Vibration, 1971, 14(1):37-55.
[5] JOSEPH P, MORFEY C L, LOWIS C R. Multi-mode sound transmission in ducts with flow[J]. Journal of Sound and Vibration, 2003, 264(3):523-544.
[6] RICE E J. Modal density function and number of propagating modes in ducts:NASA-TM X-73539[R]. Washington, D.C.:NASA, 1976.
[7] RICE E J. Modal propagation angles in a cylindrical duct with flow and their relation to sound radiation:NASA-TM-79030[R]. Washington,D.C.:NASA, 1979.
[8] FARASSAT F, MYERS M K. A study of wave propagation in a duct and mode radiation:NASA-TM-111590[R]. Washington, D.C.:NASA,1996.
[9] ABOM M. Modal decomposition in ducts based on transfer function measurements between microphone pairs[J]. Journal of Sound and Vibration, 1989,135(1):95-114.
[10] CHUNG J Y. Rejection of flow noise using a coherence function method[J]. Journal of the Acoustical Society of America, 1977, 62(2):388-395.
[11] MICHALKE A, ARNOLD F, HOLSTE F. On the coherence of the sound field in a circular duct with uniform mean flow[J]. Journal of Sound and Vibration, 1996, 190(2):261-271.
[12] MICHALKE A. On experimental sound power determination in a circular pipe with uniform mean flow[J]. Journal of Sound and Vibration, 1990, 142(2):311-341.
[13] MICHALKE A. On the propagation of sound generated in a pipe of circular cross-section with uniform mean flow[J]. Journal of Sound and Vibration, 1989,134(2):203-234.
[14] ENGHARDT L, LOWIS C. Broadband sound power determination in flow ducts[C]//10th AIAA/CEAS Aeroacoustics Conference.Reston, VA:AIAA, 2004.
[15] TAPKEN U, ENGHARDT L. Optimization of sensor arrays for radial mode analysis in flow ducts[C]//12th AIAA/CEAS Aeroacoustics Conference.Reston, VA:AIAA, 2006.
[16] JVRGENS W, TAPKEN U, PARDOWITZ B, et al. Technique to analyze characteristics of turbomachinery broadband noise sources[C]//16th AIAA/CEAS Aeroacoustic Conference. Reston, VA:AIAA, 2010
[17] DAHL M D, HIXON R, SUTLIFF D L. Further development of rotating rake mode measurement data analysis[C]//19th AIAA/CEAS Aeroacoustic Conference. Reston, VA:AIAA, 2013.
[18] TAPKEN U, BAUERS R, NEUHAUS L, et al. A new modular fan rig noise test and radial mode detection capability[C]//17th AIAA/CEAS Aeroacoustic Conference, Reston, VA:AIAA, 2011.
[19] SPITALNY M, TAPKEN U. Radial mode analysis of ducted sound fields with sensor rakes and wall flush sensor arrays under consideration of radial flow profile[C]//22nd AIAA/CEAS Aeroacoustics Conference. Reston, VA:AIAA, 2016.
[20] MUMCU A, KELLER C, HURFAR C M, et al. An acoustic excitation system for the generation of turbomachinery specific sound fields-Part I:Design and methodology[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. New York:ASME, 2016.
[21] HURFAR C M, KELLER C, MUMCU A, et al. An acoustic excitation system for the generation of tur-bomachinery specific sound fields-Part Ⅱ:Experimental verification[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. New York:ASME, 2016.
[22] TADDEI F, LUCIA M D, TORZO D, et al. A comparison between radial rakes of sensors and axial arrays of microphones for the experimental investigation of tone noise in LPTs[C]//19th AIAA/CEAS Aeroacoustics Conference. Reston, VA:AIAA, 2013.
[23] NELSON P A, YOON S H. Estimation of acoustic source strength by inverse methods:Part I, Conditioning of the inverse problem[J]. Journal of Sound and Vibration, 2000, 233(4):639-664.
[24] KIM Y, NELSON P A. Estimation of acoustic source strength within a cylindrical duct by inverse methods[J]. Journal of Sound and Vibration, 2004, 275(1):391-413.
[25] JOSEPH P, MOURIES F, ENGHARDT L. A two-microphone method for the estimation of the mode amplitude distribution in multi-mode broadband sound field in finite-length ducts with mean flow[C]//20th AIAA/CEAS Aeroacoustics Conference. Reston, VA:AIAA, 2014.

文章导航

/