收稿日期: 2016-11-28
修回日期: 2017-06-06
网络出版日期: 2017-06-06
基金资助
国家自然科学基金(11572156);江苏省普通高校研究生科研创新计划项目(KYLX15_0250);江苏高校优势学科建设工程基金
Rotor noise reduction mechanism and parameter analysis of HHC method
Received date: 2016-11-28
Revised date: 2017-06-06
Online published: 2017-06-06
Supported by
National Natural Science Foundation of China (11572156);Jiangsu Innovation Program for Graduate Education (KYLX15_0250);Priority Academic Program Development of Jiangsu Higher Education Institutions
旋翼桨-涡干扰(BVI)噪声是旋翼气动噪声抑制的主要对象之一。其中,高阶谐波控制(HHC)是一种较为有效的噪声主动抑制方法。为探究HHC方法的降噪效果、降噪机理及参数影响规律,基于嵌套网格生成方法,采用可压雷诺Navier-Stokes方程对流场进行求解,建立了适合于模拟旋翼桨-涡干扰流场的计算流体力学(CFD)数值方法。在流场CFD分析的基础上,采用FW-H(Ffowcs Williams-Hawking)方程预测桨-涡干扰状态下的旋翼噪声,通过对施加高阶谐波控制后的BO-105模型旋翼BVI噪声进行算例验证,得到了一套可以应用于高阶谐波控制下旋翼BVI噪声估算的CFD/FW-H方法。通过对不同HHC方案的数值模拟,发现在直升机斜下降状态下,施加高阶谐波控制后的旋翼BVI噪声能够降低多达4~7 dB。进一步,细致分析了HHC方案的控制频率、输入相位以及输入幅值3个参数对旋翼BVI噪声抑制效果的影响,得到了相关参数的影响规律。并且,基于输入幅值对HHC降噪效果的影响规律,对高阶谐波控制方法的降噪机理做出了进一步的说明。
陈丝雨 , 招启军 , 倪同兵 , 朱正 . 基于HHC方法的旋翼噪声抑制机理及参数影响[J]. 航空学报, 2017 , 38(10) : 121000 -121000 . DOI: 10.7527/S1000-6893.2017.121000
Rotor blade-vortex interaction (BVI) noise is one of the main objectives of rotor aerodynamic noise reduction.The higher harmonic control (HHC) method has been demonstrated to be an effective rotor noise reduction method.To obtain noise reduction effects,noise reduction mechanism and parameter effects of the HHC method,a CFD method for simulating blade-vortex interaction is established based on moving-embedded grid method and compressible Reynolds averaged Navier-Stokes (RANS) equations.Based on the previous flowfield calculations and FW-H equations,a noise prediction method CFD/FW-H is established to predict the BVI noise.The case of BO-105 rotor with HHC is calculated using the proposed method.The calculation results obtained by simulating different CFD cases demonstrate that the sound pressure levels of the case with HHC are reduced by 4-7 dB during low speed descent.The effects of the frequency,phase and the amplitude of HHC on rotor BVI noise control have been analyzed.Some conclusions about relative parameter effect rules have been obtained and the mechanism of HHC has been further explained based on the influence of amplitude on noise reduction effects of HHC.
[1] YU Y H. Rotor blade-vortex interaction noise[J]. Progress in Aerospace Sciences, 2000, 36(2):97-115.
[2] HARDIN J C, LAMKIN S L. Concepts for reduction of blade-vortex interaction noise[J]. Journal of Aircraft, 1986, 24(2):120-125.
[3] BROOKS T F, BOOTH E R, JOLLY J R, et al. Reduction of blade-vortex interaction noise through higher harmonic pitch control[J]. Journal of the American Helicopter Society, 1990, 35(1):86-91.
[4] SPLETTSTOESSER W R, SCHULTZ K J, KUBE R, et al. A higher harmonic control test in the DNW to reduce impulsive BVI noise[J]. Journal of the American Helicopter Society, 1994, 39(4):3-13.
[5] BEAUMIER P, PRIEUR J, RAHIER G, et al. Effect of higher harmonic control on helicopter rotor blade-vortex interaction noise:Prediction and initial validation[C]//75th Fluid Dynamics Panel Symposium on Aerodynamics and Aeroacoustics of Rotorcraft, Berlin, Germany, 1994.
[6] YU Y H, TUNG C, WALL B G V D,et al. The HART-Ⅱ test:Rotor wakes and aeroacoustics with higher-harmonic pitch control (HHC) inputs[C]//American Helicopter Society 58th Annual Forum, 2002:1-11.
[7] 史勇杰, 招启军, 徐国华. 旋翼桨-涡干扰气动特性计算及参数影响研究[J]. 航空学报, 2010, 31(6):1106-1114. SHI Y J, ZHAO Q J, XU G H. Numerical calculation and parametric study of aerodynamics of rotor blade-vortex interaction[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1106-1114.
[8] 冯剑波, 陆洋, 徐锦法, 等. 旋翼桨-涡干扰噪声开环桨距主动控制研究[J]. 航空学报, 2014, 35(11):2901-2909. FENG J B, LU Y, XU J F, et al. Research on the effect of open-loop active blade-pitch control on rotor BVI noise alleviation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2901-2909(in Chinese).
[9] SETH P, RAMACHANDRAN A, MOHAN R. A mechanism to generate higher harmonic control for swash plates in helicopters[C]//Asian-Australian Rotorcraft 4th Annual Forum, 2015.
[10] MALOVRH B, GANDHI F. Localized individual blade root pitch control for helicopter blade-Vortex interaction noise reduction[J]. Journal of the American Helicopter Society, 2010, 55(55):32007-1-32007-12.
[11] 朱正, 招启军. 低HSI噪声旋翼桨尖外形优化设计方法[J]. 航空学报, 2015, 36(5):1442-1452. ZHU Z, ZHAO Q J. Optimization design method for rotor blade-tip shape with low HSI noise characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1442-1452(in Chinese).
[12] SONG W P, HAN Z H, QIAO Z D. Prediction of hovering rotor noise based on Reynolds-averaged Navier-Stokes simulation[J]. Journal of Aircraft, 2007, 44(4):1391-1394.
[13] ZHAO Q J, XU G H, ZHAO J G. New hybrid method for predicting the flowfields of helicopter rotors[J]. Journal of Aircraft, 2006, 43(2):372-380.
[14] MEAKIN R L. A new method for establishing intergrid communication among systems of overset grids:AIAA-1991-1586[R]. Reston:AIAA, 1991.
[15] ROE P L. Approximate Riemann solvers, parameter vectors and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[16] VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[17] DI F P. A new boundary integral formulation for the prediction of sound radiation[J]. Journal of Sound and Vibration, 1997, 202(4):491-509.
[18] BRENTNER K S, FARASSAT F. Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces[J]. AIAA Journal, 1998, 36(8):1379-1386.
[19] CROSS J L, TU W. Tabulation of data from the tip aerodynamics and acoustics test:NACA TM-102280[R]. Washington, D.C.:NACA, 1990.
[20] YU Y H, TUNG C, GALLMAN J, et al. Aerodynamics and acoustics of rotor blade-vortex interactions[J]. Journal of Aircraft, 1995, 32(5):970-977.
[21] KESSLER C. Active rotor control for helicopters:Motivation and survey on higher harmonic control[J]. CEAS Aeronautical Journal, 2011, 1(1):1-20.
/
〈 | 〉 |