固体力学与飞行器总体设计

空间太阳能电站重力姿态-轨道-结构耦合特性

  • 刘玉亮 ,
  • 邬树楠 ,
  • 刘家夫 ,
  • 吴志刚
展开
  • 1. 大连理工大学 航空航天学院, 大连 116024;
    2. 大连理工大学 工业装备结构分析国家重点实验室, 大连 116024;
    3. 沈阳航空航天大学 航空航天工程学部, 沈阳 110136

收稿日期: 2017-03-15

  修回日期: 2017-12-07

  网络出版日期: 2017-05-31

基金资助

国家自然科学基金(11432010,1150240);中央高校基本科研业务费专项资金(DUT15LK31)

Gravitational attitude-orbit-structure coupling of space solar power station

  • LIU Yuliang ,
  • WU Shu'nan ,
  • LIU Jiafu ,
  • WU Zhigang
Expand
  • 1. School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China;
    2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
    3. Department of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China

Received date: 2017-03-15

  Revised date: 2017-12-07

  Online published: 2017-05-31

Supported by

National Natural Science Foundation of China (11432010, 11502040); the Fundamental Research Funds for the Central Universities (DUT15LK31)

摘要

基于结构小变形假设,将太阳帆塔式空间太阳能电站(SSPS)简化为两端自由的Euler-Bernoulli梁模型,并建立在重力作用下,假设只考虑轨道平面内电站的姿态和轨道运动与结构振动的耦合动力学方程。其受到的重力、重力梯度力矩和广义重力将以其结构尺寸与运行轨道半径的比值为变量进行泰勒展开,并保留至四阶项。通过对其动力学方程的分析发现,当假设只考虑轨道平面内的姿态运动和轨道平面内结构的横向振动时,结构振动对姿态和轨道运动的影响只存在于三阶及其以上的重力和重力梯度力矩中。此外,在重力激励下当电站的结构角频率小于某一特定值时,其结构振动将会出现屈曲不稳定的现象。保证电站结构振动稳定的条件也将在文中给出。为了分析重力激励对结构振动的影响,提出了"等效角频率"的概念。数值仿真表明,当电站结构角频率较低时,重力激励将对电站的振动产生很大影响。而且重力引起的姿态-轨道-结构的耦合作用也将对空间太阳能电站的轨道运动产生较大影响,轨道半径误差能达千米量级。

本文引用格式

刘玉亮 , 邬树楠 , 刘家夫 , 吴志刚 . 空间太阳能电站重力姿态-轨道-结构耦合特性[J]. 航空学报, 2017 , 38(12) : 221244 -221244 . DOI: 10.7527/S1000-6893.2017.221244

Abstract

Based on the assumption of small deformation of the structure, the sun tower Space Solar Power Station (SSPS) is simplified to a Euler-Bernoulli beam with both ends being free, and the coupled dynamical equations for the orbital and attitude motions and structure vibration of the station under the excitation of gravitational force are proposed, which consider only the attitude motion and the structure vibration on the orbital plane. The gravitational force, torque and generalized force are expanded in a Taylor series in the small ratio (spacecraft size/orbital radius) which permits terms up to fourth order to be retained.An analysis of the structural vibration equations finds that the influence of structural vibration on the orbital and attitude motion exists only in no less than three-order gravitational forces and torques if only attitude motion and transverse vibration of the structure on the orbital plane are considered. In addition, a buckling instability of the structure can occur under the excitation of gravitational force if the angular frequency of the space solar power station is below a certain threshold. The condition to guarantee the stabilization of the structure vibration is also derived. A concept of "equivalent angular frequency" is defined for analyzing the influence of the excitation of gravitational force on structural vibration. Numerical simulations show that the influence of the excitation of gravitational force on the structural vibration is great if the angular frequency is low. The coupling effect among the orbital and attitude motion and structural vibration on orbital motion is also great, and the error of the orbital radius can reach the order of one kilometer.

参考文献

[1] GLASER P E. Power from the sun:Its future[J]. Science, 1968, 162(3856):857-861.[2] MANKINS J, KAYA N, VASILE M. SPS-ALPHA:The first practical solar power satellite via arbitrarily large phased array:AIAA-2012-3978[R]. Reston, VA:AIAA, 2012.[3] SASAKI S, TANAKA K, HIGUCHI K, et al. A new concept of solar power satellite:Tethered-SPS[J]. Acta Astronautica, 2007, 60(3):153-165.[4] SEBOLDT W, KLIMKE M, LEIPOLD M, et al. European sail tower SPS concept[J]. Acta Astronautica, 2001, 48(5):785-792.[5] 侯欣宾, 王立, 张兴华, 等. 多旋转关节空间太阳能电站概念方案设计[J]. 宇航学报, 2015, 36(11):1332-1338. HOU X B, WANG L, ZHANG X H, et al. Concept design on multi-rotary joints SPS[J]. Journal of Astronautics, 2015, 36(11):1332-1338(in Chinese).[6] YANG Y, ZHANG Y Q, DUAN B Y, et al. A novel design project for space solar power station (SSPS-OMEGA)[J]. Acta Astronautica, 2016, 121:51-58.[7] 王立, 侯欣宾. 空间太阳能电站的关键技术及发展建议[J]. 航天器环境工程, 2014, 31(4):343-350. WANG L, HOU X B. Key technologies and some suggestions for the development of space solar power station[J]. Spacecraft Environment Engineering, 2014, 31(4):343-350(in Chinese).[8] GRAF O F, Jr. Orbital motion of the solar power satellite:NASA-CP-151603[R]. Washington, D.C.:NASA, 1978.[9] MCNALLY I, SCHEERES D, RADICE G. Locating large solar power satellites in the geosynchronous Laplace plane[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(3):489-505.[10] 刘玉亮, 邬树楠, 吴志刚, 等. 空间太阳能电站地球同步拉普拉斯轨道动力学特性[J]. 中国空间科学技术, 2016, 36(5):1-8. LIU Y L, WU S N, WU Z G, et al. Dynamic characteristics of geosynchronous Laplace orbit for space solar power station[J]. Chinese Space Science and Technology, 2016, 36(5):1-8(in Chinese).[11] MCNALLY I, SCHEERES D, RADICE G. Attitude dynamics of large geosynchronous solar power satellites[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston, VA:AIAA, 2014:1-13.[12] WIE B, ROITHMAYR C M. Attitude and orbit control of a very large geostationary solar power satellite[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):439-451.[13] ISHIMURA K, NATORI M, WADA M. Stability analysis and decentralized system design of large space structures based on potential field[C]//13th International Conferenc on Adaptive Structures and Technologies. Boca Raton, FL:CRC Press, 2003:413-422.[14] ISHIMURA K, HIGUCHI K. Coupling between structural deformation and attitude motion of large planar space structures suspended by multi-tethers[J]. Acta Astronautica, 2007, 60(8):691-710.[15] GLAESE J R, MCDONALD E J. Space solar power multi-body dynamics and controls, concepts for the integrated symmetrical concentrator configuration:TCD20000222A[R]. Washington, D.C.:NASA, 2000.[16] 周荻, 范继祥. 绳系太阳能发电卫星姿态机动的主动振动控制[J]. 宇航学报, 2012, 33(5):605-611. ZHOU D, FAN J X. Boundary control in the attitude maneuvering of tethered space solar power satellite[J]. Journal of Astronautics, 2012, 33(5):605-611(in Chinese).[17] 魏乙, 邓子辰, 李庆军, 等. 绳系空间太阳能电站动力学响应分析[J]. 宇航学报, 2016, 37(9):1041-1048. WEI Y, DENG Z C, LI Q J, et al. Analysis of dynamic response of tethered space solar power station[J]. Journal of Astronautics, 2016, 37(9):1041-1048(in Chinese).[18] DUBOSHIN G N. The differential equations of translational-rotational motion of mutally attracting rigid bodies[J]. Soviet Astronomy, 1958, 2:239-250.[19] LANGE B. Linear coupling between orbital and attitude motions of a rigid body[J]. Journal of the Astronautical Sciences, 1970, 18:150-167.[20] SINCARSIN G B, HUGHES P C. Gravitational orbit-attitude coupling for very large spacecraft[J]. Celestial Mechanics, 1983, 31(2):143-161.[21] ASHENBERG J. Mutual gravitational potential and torque of solid bodies via inertia integrals[J]. Celestial Mechanics and Dynamical Astronomy, 2007, 99(2):149-159.[22] WANG Y, XU S. Gravitational orbit-rotation coupling of a rigid satellite around a spheroid planet[J]. Journal of Aerospace Engineering, 2012, 27(1):140-150.[23] 吴志刚, 刘玉亮, 张开明, 等. 高阶重力和力矩对空间太阳能电站运动的影响[J]. 空间控制技术与应用, 2016, 42(4):1-5. WU Z G, LIU Y L, ZHANG K M, et al. The influences of higher order gravitational force and torque to the motion of space solar power station[J]. Aerospace Control and Application, 2016, 42(4):1-5(in Chinese).[24] LIU Y L, WU S N, ZHANG K G, et al. Gravitational orbit-attitude coupling dynamics of a large solar power satellite[J]. Aerospace Science and Technology, 2017, 62:46-54.[25] 刘暾, 赵钧. 空间飞行器动力学[M]. 哈尔滨:哈尔滨工业大学出版社, 2003:153-154. LIU D, ZHAO J. Dynamics of spacecraft[M]. Harbin:Harbin Institute of Technology Press, 2003:153-154(in Chinese).[26] ASHLEY H. Observations on the dynamic behavior of large flexible bodies in orbit[J]. AIAA Journal, 1967, 5(3):460-469.[27] BAINUM P M, KUMAR V K, JAMES P K. The dynamics and control of large flexible space structures, Part B:Development of continuum model and computer simulation:NASA-CR-l63612[R]. Washington,D.C.:NASA, 1978.[28] KANE T R, RYAN R, BANERJEE A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(2):139-151.[29] 杨辉, 洪嘉振, 余征跃. 两种刚柔耦合动力学模型的对比研究[J]. 上海交通大学学报, 2002, 36(11):1591-1595. YANG H, HONG J Z, YU Z Y. Study on two dynamic models for a rigid-flexible coupling system[J]. Journal of Shanghai Jiaotong University, 2002, 36(11):1591-1595(in Chinese).[30] ASHLEY H. Observations on the dynamic behavior of large flexible bodies in orbit[J]. AIAA Journal, 1967, 5(3):460-469.
文章导航

/