Flight dynamic characteristics of canard rotor/wing aircraft in hover
Received date: 2017-01-17
Revised date: 2017-05-31
Online published: 2017-05-31
针对鸭式旋翼/机翼(Canard Rotor/Wing,CRW)飞机独特的气动布局,常规的分析方法及经验公式很难准确地对CRW飞机进行飞行动力学研究,通过飞行辨识对CRW飞机悬停状态特性进行了研究。首先,设计了飞行试验并获得了高质量的飞行数据,基于频率响应对CRW飞机的状态空间模型进行了简化。然后,在频域内对飞机的动力学参数进行了拟合优化,获得了CRW飞机悬停状态的动力学模型,并用飞行数据对所建模型进行了验证。最后,用辨识所得参数与常规直升机悬停状态时的参数进行了对比。结果显示悬停时CRW飞机的操纵导数和阻尼导数均比常规直升机小,经分析,操纵导数的减小主要是CRW飞机独特的旋翼设计所致,阻尼导数减小的原因主要是旋翼气动影响以及鸭翼、平尾、垂尾的结构影响。动力学特性分析结果为CRW飞机旋翼模式总体设计的进一步优化提供了指引和参考,所建立的模型可用于控制系统设计。
关键词: 鸭式旋翼/机翼(CRW); 直升机; 动力学特性; 悬停; 飞行辨识
高红岗 , 高正红 , 邓阳平 , 曹煜 . 鸭式旋翼/机翼飞机悬停状态飞行动力学特性[J]. 航空学报, 2017 , 38(11) : 121139 -121139 . DOI: 10.7527/S1000-6893.2017.121139
Flight test identification is adopted in the study of flight dynamics of Canard Rotor/Wing (CRW) aircraft because conventional methods and empirical formulas are not suitable for flight dynamic analysis of CRW aircraft due to its unique layout. The flight test is first designed and high quality data are obtained. Based on the frequency response, the state pace model of the CRW aircraft is simplified, and the kinetic parameters of the aircraft are optimized in the frequency domain. A high confidence dynamics model of the CRW aircraft in hover is then obtained and confirmed by the flight data. A comparison between the CRW model and the conventional helicopter model in hover shows that the control derivatives and the damping derivatives of the CRW aircraft are smaller than those of the conventional helicopter. It is found that the decrease of the control derivatives is mainly due to the rotor aerodynamic characteristics, and the reason for the decrease of damping derivatives is mainly the design of canard, horizontal tail and vertical fin. The comparison results provide guidance and reference for further optimization of CRW aircraft rotor mode design, and the dynamics model can be used to design the control system.
[1] BASS S M, THOMPSON T L, RUTHERFORD J W, et al. Low-speed wind tunnel test results of the canard rotor/wing concept:AIAA-1993-3412[R]. Reston,VA:AIAA, 1993.
[2] CROSSLEY W A, BASS S M. Using aerodynamic analysis codes to assist in structural design and optimization of ducted rotor/wing blades:AIAA-1992-4280[R]. Reston,VA:AIAA, 1992.
[3] OSDER S S. Integrated navigation, guidance, and control for canard rotor/wing (CRW) aircraft[C]//13th Digital Avionics Systems Conference. Piscataway, NJ:IEEE Press, 1994:181-189.
[4] SUN W, GAO Z H, DU Y M, et al. Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil[J]. Chinese Journal of Aeronautics, 2015, 28(3):687-694.
[5] 孙威,高正红,黄江涛,等.旋转机翼悬停气动特性研究[J].空气动力学学报,2015,33(2):232-238. SUN W, GAO Z H,HUANG J T, et al. Aerodynamic characteristics of hovering rotor/wing[J]. Acta Aerodynamica Sinica, 2015, 33(2):232-238(in Chinese).
[6] 邓阳平,高正红,詹浩.鸭式旋翼/机翼飞机悬停及小速度前飞气动干扰实验研究[J].实验力学, 2009,24(6):563-567. DENG Y P, GAO Z H, ZHAN H. Experimental investigation on aerodynamic interactions of canard rotor/wing aircraft in hover and low speed forward flight[J]. Journal of Experimental Mechanics, 2009, 24(6):563-567(in Chinese).
[7] 何澳,高正红,邓阳平,等.旋转机翼对CRW飞机气动特性影响的动态试验研究[J].实验流体力学,2013,27(3):13-16. HE A, GAO Z H, DENG Y P, et al. A wind tunnel study on aerodynamic characteristics of CRW plane by the rotor/wing[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3):13-16(in Chinese).
[8] 史振兴,高正红.鸭式旋转机翼飞机过渡段旋翼卸载特性分析[J].飞行力学,2014,32(4):298-302. SHI Z X, GAO Z H.Analysis of unloading characteristics of the canard rotary wing airplane blade in transitional process[J]. Flight Dynamics, 2014,32(4):298-302(in Chinese).
[9] 李毅波,马东立,牛凌宇.鸭式旋翼/机翼飞行器转换末段气动特性[J].北京航空航天大学学报,2011,37(3):311-315. LI Y B, MA D L, NIU L Y.Aerodynamic characteristic of canard rotor/wing aircraft in conversion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3):311-315(in Chinese).
[10] 盖文东,王宏伦,李大伟.鸭式旋翼/机翼无人机飞行动力学建模与分析[J].空气动力学学报,2012,30(2):244-249. GAI W D,WANG H L, LI D W. Flight dynamics modeling and analysis of canard rotor/wing UAV[J]. Acta Aerodynamica Sinica, 2012, 30(2):244-249(in Chinese).
[11] 梁琨,邓阳平,高正红.旋转机翼飞机旋翼飞行动力学模型及配平[J].飞行力学,2010,28(5):5-8. LIANG K, DENG Y P, GAO Z H. Model and trimming of rotor-wing plane at rotor-wing flight mode[J]. Flight Dynamics, 2010, 28(5):5-8(in Chinese).
[12] 李星,高正红,刘艳.三翼面CRW飞机纵向最优配平点研究[J]. 飞行力学,2010,28(3):13-16. LI X, GAO Z H, LIU Y.Longitudinal optimal trimming points research for three-surface CRW aircraft[J]. Flight Dynamics, 2010, 28(3):13-16(in Chinese).
[13] REMPLE R K,TISCHLER M B. Aircraft and rotorcraft system identification[M]. Reston,VA:AIAA, 2006.
[14] 王适存.直升机空气动力学[M].南京:南京航空学院,1985:24-28. WANG S C. Helicopter aerodynamics[M]. Nanjing:Nanjing Aviation College, 1985:24-28(in Chinese).
[15] 高正,陈仁良.直升机飞行动力学[M].北京:科学出版社,2003:43-55, 64-65. GAO Z, CHEN R L. Helicopter flight dynamics[M]. Beijing:Science Press, 2003:43-55, 64-65(in Chinese).
[16] 方振平,陈万春,张曙光.航空飞行器飞行动力学[M].北京:北京航空航天大学出版社,2015:174-203. FANG Z P, CHEN W C, ZHANG S G. Aviation aircraft flight dynamics[M]. Beijing:Beihang University Press, 2015:174-203(in Chinese).
[17] 方振平.飞机飞行动力学[M].北京:北京航空航天大学出版社,2008:64-135. FANG Z P. Aircraft flight dynamics[M]. Beijing:Beihang University Press, 2008:64-135(in Chinese).
[18] TISCHLER M B, LEUNG J G M, DUGAN D C. Frequency-domain identification of XV-15 tilt-rotor aircraft dynamics:AIAA-1983-2695[R]. Reston, VA:AIAA, 1983.
[19] 顾冬雷,高正,孙传伟.无人直升机控制动态特性的频域辨识建模方法[J].南京航空航天大学学报,2004,36(6):688-692. GU D L, GAO Z, SUN C W. Frequency domain identification for unmanned helicopter[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2004, 36(6):688-692(in Chinese).
[20] 夏慧,陈庆伟,王冠林,等.无人直升机频域辨识模型参数摄动分析[J].电光与控制,2012,19(8):54-58. XIA H, CHEN Q W, WANG G L, et al.Frequency domain identification model's parameter perturbation analysis for an unmanned rotorcraft[J]. Electronics Optics and Control, 2012, 19(8):54-58(in Chinese).
/
〈 | 〉 |