流体力学与飞行力学

高焓化学非平衡流条件下防热材料表面催化特性的试验方法

  • 刘丽萍 ,
  • 王国林 ,
  • 王一光 ,
  • 马昊军 ,
  • 罗杰 ,
  • 张军
展开
  • 1. 西北工业大学 超高温结构复合材料重点实验室, 西安 710072;
    2. 中国空气动力研究与发展中心 超高速空气动力研究所, 绵阳 621000

收稿日期: 2017-04-12

  修回日期: 2017-05-27

  网络出版日期: 2017-05-27

基金资助

国家自然科学基金(51172181,11602289)

Test methods for determining surface catalytic properties of thermal protection materials in high enthalpy chemical non-equilibrium flows

  • LIU Liping ,
  • WANG Guolin ,
  • WANG Yiguang ,
  • MA Haojun ,
  • LUO Jie ,
  • ZHANG Jun
Expand
  • 1. Key Laboratory of Science and Technology on Thermostructural Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-04-12

  Revised date: 2017-05-27

  Online published: 2017-05-27

Supported by

National Natural Science Foundation of China (51172181,11602289)

摘要

通过对高焓化学非平衡流场参数高精度重构和试样表面参数测试方法的研究,在1 MW高频等离子体风洞上建立了防热材料(Thermal Protection Materials,TPMs)表面催化特性测试的试验方法。应用该方法研究了二氧化硅材料在驻点压力分别为2.7、5和10 kPa,焓值为13.9~21.9 MJ/kg的高焓离解空气环境下,表面温度为1 563~2 003 K范围内的表面催化反应复合效率随表面温度和原子压力的变化关系。对比国外文献,该试验结果与国外研究结果一致,表明该试验方法是正确、可靠的。同时,高焓化学非平衡流条件下防热材料表面催化特性试验方法的确立将为高超声速飞行器热防护系统的优化设计和新型防热材料性能改进提供有力的技术支撑。

本文引用格式

刘丽萍 , 王国林 , 王一光 , 马昊军 , 罗杰 , 张军 . 高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J]. 航空学报, 2017 , 38(10) : 121317 -121317 . DOI: 10.7527/S1000-6893.2017.121317

Abstract

The method for determining the surface catalytic recombination coefficients of Thermal Protection Materials (TPMs) in high enthalpy dissociated flows is established on 1 MW high frequency plasma wind tunnel according to the research development in diagnostics of high enthalpy chemical non-equilibrium flow and surface parameter determination of TPMs. This paper presents the catalytic recombination coefficient of SiO2, with surface temperature being 1 563-2 003 K, enthalpy being 13.9-21.9 MJ/kg, and stagnation point pressure being 2.7, 5 and 10 kPa. The test results agree well with foreign literatures, indicating reliability of the method for determination of catalytic recombination coefficient. The method proposed can provide support for precise prediction of aerodynamic heat environment and more accurate design of TPMs.

参考文献

[1] 崔尔杰. 近空间飞行器研究发展现状及关键技术问题[J]. 力学进展, 2009, 39(6):658-673. CUI E J. Research status development trends and key technical problems of near space flying vehicles[J]. Advances in Mechanics, 2009, 39(6):658-673(in Chinese).
[2] ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 1989.
[3] 瞿章华. 高超声速空气动力学[M]. 长沙:国防科技大学出版社, 2001. QU Z H. Hypersonic aerodynamics[M]. Changsha:National University of Defence Technology Press, 2001(in Chinese).
[4] 徐华舫. 空气动力学基础[M]. 北京:国防工业出版社, 1979. XU H F. Fundamentals of aerodynamics[M]. Beijing:National Defence Industry Press, 1979(in Chinese).
[5] GOULARD R. On catalytic recombination rates in hypersonic stagnation heat transfer[J]. Journal of Jet Propulsion, 1958, 28(11):737-745.
[6] KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory:AIAA-2000-2366[R]. Reston, VA:AIAA, 2000.
[7] STEWART D A, CHEN Y K, BAMFORD B J,et al. Predicting material surface catalytic effciency using arc-jet tests:AIAA-1995-2013[R]. Reston, VA:AIAA, 1995.
[8] SCOTT C D. Catalytic recombination of nitrogen and oxygen on high-temperature reusable surface insulation:AIAA-1980-1477[R]. Reston, VA:AIAA, 1980.
[9] KOVALEV V L, KOLESNIKOV A F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry[J]. Fluid Dynamics, 2005, 40(5):669-693.
[10] VLASOV A V, ZALOGIN G N, ZEMLYANSKⅡ B A, et al. Methods and results of an experimental determi nation of the catalytic activity of materials at high temperatures[J]. Fluid Dynamics, 2003, 38(5):815-825.
[11] MATTHEW M, ERIC M, RONALD P, et al. Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2):470-474.
[12] 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2):287-302. MENG S H, JIN H, WANG G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302(in Chinese).
[13] NASUTI F, BRUNO C. Material-dependent catalytic recombination modeling for hypersonic flows:AIAA-1993-2840[R]. Reston, VA:AIAA,1993.
[14] BARBATO M. Modelling catalytic recombination heating at hypersonic speeds:AIAA-1989-0309[R]. Reston, VA:AIAA, 1989.
[15] KUROTAKI T, ITO T, MATSUZAKI T,et al. CFD evaluation of pressure effects on surface catalysis of SiO2-based TPS:AIAA-2005-0388[R]. Reston, VA:AIAA, 2005.
[16] MIZUNO M, ITO T, MATSUZAKI T,et al. Experimental and numerical investigation of catalytic efficiency of atomic oxygen recombination on TPS surfaces:AIAA-2009-3934[R]. Reston, VA:AIAA, 2009.
[17] MARSCHALL J, FLETCHER D. Optical emission spectroscopy during plasmatron testing of ZrB2-SiC ultrahigh-temperature ceramic composites[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(2):43-52.
[18] GREAVES J, LINNETT J. Recombination of atoms at surfaces. Part 6-Recombination of oxygen atoms on silica from 20℃ to 600℃[J].Transactions of the Faraday Society, 1959, 55(2):1355-1361.
[19] KIM Y C, BOUDART M. Recombination of O, N and H atoms on silica:Kinetics and mechanism[J]. Langmuir, 1991, 7:2999-3005.
[20] STEWART D A, LEISER D B,KOLODZIEJ P,et al. Thermal response of integral multicomponent composite thermal protection systems[J]. Journal of Spacecraft and Rockets, 1986, 23(4):420-427.
[21] SCOTT C D. Catalytic recombination of nitrogen and oxygen on iron-cobalt-chromia spinel:AIAA-1983-0585[R]. Reston, VA:AIAA,1983.
[22] WILLEY R J. Comparison of kinetic models for atom re-combination on high-temperature reusable surface insu-lation[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(1):55-62.
[23] STEWART D A, RAKICH J V, LANFRANCO M J. Catalytic surfaces effects on space shuttle thermal protection system during earth entry of flights STS-2 through STS-5:NASA CP-2283[R]. Washington, D.C.:NASA, 1983.
[24] STEWART D A, KOLODZIEJ P, LEISER D B. Effect of variable surface catalysis on heating near stagnation point of a blunt body:AIAA-1985-0248[R]. Reston, VA:AIAA,1985.
[25] STEWART D A. Determination of surface catalytic efficiency for thermal protection materials-room temperature to their upper use limit:AIAA-1996-1863[R]. Reston, VA:AIAA,1996.

文章导航

/