材料工程与机械制造

筒状复合材料制件热压罐成型温度模拟及影响因素分析

  • 向炳东 ,
  • 李敏 ,
  • 李艳霞 ,
  • 顾轶卓 ,
  • 张佐光 ,
  • 李健芳 ,
  • 李桂洋
展开
  • 1. 北京航空航天大学 材料科学与工程学院, 北京 100083;
    2. 航天材料及工艺研究所, 北京 100076

收稿日期: 2017-03-20

  修回日期: 2017-05-27

  网络出版日期: 2017-05-27

Numerical simulation and parameter analysis of temperature distribution of autoclave cured composite cylindrical structure

  • XIANG Bingdong ,
  • LI Min ,
  • LI Yanxia ,
  • GU Yizhuo ,
  • ZHANG Zuoguang ,
  • LI Jianfang ,
  • LI Guiyang
Expand
  • 1. School of Materials Science and Engineering, Beihang University, Beijing 100083, China;
    2. Aerospace Research Institute of Material & Processing Technology, Beijing 100076, China

Received date: 2017-03-20

  Revised date: 2017-05-27

  Online published: 2017-05-27

摘要

筒状结构是航天飞行器的典型结构形式之一,其在热压罐成型工艺过程中多采用圆筒结构径向平面垂直于热压罐径向平面的放置方式,在其成型过程中筒状结构的迎风面、背风面、侧风面等可能会存在较大的温度分布不均匀现象,针对该问题,基于Fluent软件建立了考虑树脂固化反应放热的温度场分析方法,并选取圆筒结构典型位置的温度变化历程对仿真结果的有效性进行了验证,并且分析了圆筒结构的温度场分布特性。在此基础上,改变热压罐的升温速率,分析了圆筒制件内温度和固化度的分布变化规律。结果表明:对于圆筒结构热压罐成型过程,因为结构特性而带来的温度差异远远大于因传热引起的温度差异;热压罐升温速率从0.5 K/min上升至5 K/min,圆筒制件迎风面与背风面温度差值最大值仅增大1.1 K,最大固化度差值仅增加2.08%,热压罐升温速率对圆筒结构温度场与固化度均匀性影响不大。研究结果对实际生产中圆筒结构的热压罐固化成型工艺优化有一定的指导意义。

本文引用格式

向炳东 , 李敏 , 李艳霞 , 顾轶卓 , 张佐光 , 李健芳 , 李桂洋 . 筒状复合材料制件热压罐成型温度模拟及影响因素分析[J]. 航空学报, 2017 , 38(11) : 421258 -421258 . DOI: 10.7527/S1000-6893.2017.421258

Abstract

The cylindrical structure is one of the most common structural form in spacecraft. During the autoclave process, the cylindrical parts are often arranged radially perpendicular to the radial direction of the autoclave, leading to uneven distribution of temperature in the cylindrical part. In this paper, a numerical simulation method is developed based on the software Fluent to predict distribution of temperature and curing degree in the cylindrical part during the autoclave process. The effectiveness of the simulation method is verified by comparing the results of experimental data and simulated data. Based on the simulated data, the effects of heating rate on the distribution of the temperature and curing degree in the cylindrical structure are analyzed. The final results show that the temperature difference caused by the structural characteristics is greater than that by heat transfer during the autoclave process of the cylindrical part. When the heating rate autoclave grows from 0.5 K/min to 5 K/min, the maximum differences between the windward and leeward in temperature and curing degree increase by 1.1 K and 2.08% respectively, indicating that heating rate does not have a significant influence on temperature and curing degree distribution. These results are helpful for the optimization of cylindrical structures during autoclave process.

参考文献

[1] 车剑飞, 黄洁雯, 杨娟, 等. 复合材料及其工程应用[M]. 北京:机械工业出版社, 2006:138-195. CHE J F, HUANG J W, YANG J, et al. Composite materials and its engineering application[M]. Beijing:China Machine Press, 2006:138-195(in Chinese).
[2] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
[3] 贾云超, 关志东, 李星, 等. 热压罐温度场分析与影响因素研究[J]. 航空制造技术, 2016(1/2):90-95. JIA Y C, GUAN Z D, LI X, et al. Analysis of temperature field distribution and study of influence factor in autoclave process[J]. Aeronautical Manufacturing Technology, 2016(1/2):90-95(in Chinese).
[4] 王永贵, 梁宪珠, 曹正华, 等. 热压罐工艺成型先进复合材料构件的温度场研究综述[J]. 玻璃钢/复合材料, 2009(3):81-85. WANG Y G, LIANG X Z, CAO Z H, et al. Review of the temperature field research of autoclave moulding for advanced composite components[J]. Fiber Reinforced Plastics/Composites, 2009(3):81-85(in Chinese).
[5] 王永贵, 梁宪珠, 薛向晨, 等. 热压罐工艺的传热分析和框架式模具温度场分布[J]. 航空制造技术, 2008(22):80-83. WANG Y G, LIANG X Z, XUE X C, et al. Analysis of heat transfer and temperature field distribution on frame tooling in autoclave process[J]. Aeronautical Manufacturing Technology, 2008(22):80-83(in Chinese).
[6] 张铖, 梁宪珠, 王永贵, 等. 热压罐工艺环境对于先进复合材料框架式成型模具温度场的影响[J]. 材料科学与工程学报, 2011, 29(4):547-553. ZHANG C, LIANG X Z, WANG Y G, et al. Rules of impact of autoclave environment on frame mould temperature field of advanced composites[J]. Journal of Materials Science and Engineering, 2011, 29(4):547-553(in Chinese).
[7] 岳广全, 张博明, 杜善义, 等. 热压罐成型工艺所用框架式模具的变形分析[J]. 复合材料学报, 2009, 26(5):148-152. YUE G Q, ZHANG B M, DU S Y, et al. Geometrical deformations of the framed-mould in autoclave processing for composite structures[J]. Acta Materiae Compositae Sinica, 2009, 26(5):148-152(in Chinese).
[8] 林家冠, 杨睿, 王廷霞, 等. 大型复合材料构件热压罐成型温度分析与均匀性改善研究[J]. 玻璃钢/复合材料, 2015(5):61-65. LIN J G, YANG R, WANG T X, et al. Large-scale composite curing temperature analysis and improvement in autoclave process[J]. Fiber Reinforced Plastics/Composites, 2015(5):61-65(in Chinese).
[9] 傅承阳. 飞机复合材料制件热压罐成型温度场模拟与改善方法[D]. 南京:南京航空航天大学, 2013. FU C Y. Temperature uniformity optimizing method of the aircraft composite parts in autoclave processing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
[10] 王俊敏, 郑志镇, 陈荣创, 等. 树脂基复合材料固化过程固化度场和温度场的均匀性优化[J]. 工程塑料应用, 2015, 43(4):55-61. WANG J M, ZHENG Z Z, CHEN R C, et al. Curing degree field and temperature field uniformity optimization during curing process of resin matrix composites[J]. Engineering Plastics Application, 2015, 43(4):55-61(in Chinese).
[11] 白树成, 王清海, 刘梦媛, 等. 大尺寸复合材料构件热压罐成型工艺温度场均匀性控制[C]//第十四届全国复合材料学术会议论文集, 2006:5. BAI S C, WANG Q H, LIU M Y, et al. The well-distributed temperature field control in large composite part autoclave process[C]//14th National Academic Conference on Composite Material, 2006:5(in Chinese).
[12] 张纪奎, 郦正能, 关志东, 等. 热固性复合材料固化过程三维有限元模拟和变形预测[J]. 复合材料学报, 2009, 26(1):174-178. ZHANG J K, LI Z N, GUAN Z D, et al. Three-dimensional finite element simulation and prediction for process-induced deformation of thermoset composites[J]. Acta Materiae Compositae Sinica, 2009, 26(1):174-178(in Chinese).
[13] ANDREW A J. An integrated model of the development of process-induced deformation in autoclave processing of composite structure[D]. Vancouver:The University of British Columbia, 1997.
[14] 李恒, 王德海, 钱夏庆. 环氧树脂固化动力学的研究及应用[J]. 玻璃钢/复合材料, 2013(4):44-51. LI H, WANG D H, QIAN X Q. Research of epoxy resin curing kinetics and its application[J]. Fiber Reinforced Plastics/Composites, 2013(4):44-51(in Chinese).
[15] 钱玉春, 陈拴发, 丛培良, 等. 环氧树脂体系固化反应动力学特征[J]. 郑州大学学报(工学版), 2012, 33(3):95-98. QIAN Y C, CHEN S F, CONG P L, et al, Curing kinetical characteristics of epoxy resin system[J], Journal of Zhengzhou University(Engineering Science), 2012, 33(3):95-98(in Chinese).
[16] 张竞, 黄培. 环氧树脂固化动力学研究进展[J]. 材料导报, 2009, 23(7):58-61,81. ZHANG J, HUANG P. Research advances inepoxy resin curing kinetics[J]. Materials Review, 2009, 23(7):58-61,81(in Chinese).
[17] 陈晓春, 朱颖心, 王元. 零方程模型用于空调通风房间气流组织数值模拟的研究[J]. 暖通空调, 2006, 36(8):19-24. CHEN X C, ZHU Y X, WANG Y. Airflow simulation in air-conditioned and ventilated rooms with zero-equation model[J]. Heating Ventilating & Air Conditioning, 2006, 36(8):19-24(in Chinese).
[18] RAMADHYANI S. Two-equation and second-moment turbulence models for convective heat transfer[M]. Washington, D. C.:Taylor & Francis, 1997:171-199.
[19] FAROUK B, GUCERI S I.Laminar and turbulent natural convection in the annulus between horizontal concentric cylinders[J]. Journal of Heat Transfer, 1982, 104(4):631-636.
[20] 姚仲鹏, 王瑞君. 传热学[M]. 北京:北京理工大学出版社, 1995:299. YAO Z P, WANG R J. Heat transfer[M]. Beijing:Beijing Institute of Technology Press, 1995:299(in Chinese).
[21] 李承花, 张奕, 左琴华, 等. 差式扫描量热仪的原理与应用[J]. 分析仪器, 2015(4):88-94. LI C H, ZHANG Y, ZUO Q H, et al. The principle and its application of differential scanning calorimeter[J]. Analytical Instrumentation, 2015(4):88-94(in Chinese).
[22] 胡玉华, 吐伟, 汪梅影, 等. 差示扫描量热仪(DSC)测定液体比热的研究[C]//2012大连润滑油技术经济论坛论文集, 2012:281-284. HU Y H, TU W, WANG M Y, et al. The study on determination of specific heat of liquid by DSC[C]//2012 Dalian Lubricants Technical and Economic Forum, 2012:281-284(in Chinese).

文章导航

/