随着航空磁探技术和信号处理技术的发展,航空磁探很可能具备对磁异常信号源的磁场各分量进行探测识别的能力,而目前的磁诱饵研究中,两电极直开口式磁源无法模拟潜艇的空中磁场各分量。针对此问题,提出了3种磁体与两电极式相组合的诱饵磁源方案,建立了空中磁场模型。针对某型潜艇模型的实测数据,通过遗传算法确定了各类磁源的最优参数,并对它们进行了模拟效果分析、热计算及功率计算。结果表明:与两电极式磁源及多磁体两电极组合式磁源相比,单磁体与两电极式相组合的方案能够在保证磁源整体结构相对简单的前提下较好地模拟目标潜艇的磁感应强度各分量,是较优的诱饵磁源结构。
With the development of aeromagnetic detection and signal processing technologies, aeromagnetic detection equipment is highly likely to have the ability to recognize the magnetic field components of the magnetic anomaly source in the near future. However, in the current research on the magnetic decoy, the two-electrode direct opening magnetic-field source cannot simulate the components of the submarine magnetic field in the air. To solve this problem, a decoy magnetic field source scheme combining three types of magnets and the two-electrode magnetic-field source are proposed, and the calculation formulas for the magnetic fields in the air have been modeled.Based on the measured data of a submarine model, the optimal parameters of all kinds of magnetic-field sources are determined by the genetic algorithm. The simulation results are then analyzed, and thermal calculations and power calculations are carried out. A comparison with the two-electrode type, as well as multi-magnet two-electrode magnetic-field sources, the single-magnet two-electrode magnetic-field source is a better structure scheme for the decoy, which can better simulate the components of the magnetic induction intensity of the target submarine when the overall structure of the magnetic-field source is relatively simple.
[1] 孙明太. 航空反潜概论[M]. 北京:国防工业出版社, 1998:4-10. SUN M T. Aviation antisubmarine introduction[M]. Beijing:National Defence Industry Press, 1998:4-10(in Chinese).[2] 曾小牛, 李夕海. 基于磁异常探测的航空反潜技术[C]//国家安全地球物理专题研讨会. 武汉:中国地球物理学会,2009:44-52. ZENG X N, LI X H. Review of aviation anti-submarine technology based on magnetic anomaly detection[C]//Chinese Geophysical Symposium on Security. Wuhan:Chinese Geophysical Society, 2009:44-52(in Chinese).[3] 崔旭涛, 杨日杰, 何友. 声纳浮标与磁探联合搜潜仿真研究[J]. 系统仿真学报, 2008, 20(16):4357-4359. CUI X T, YANG R J, HE Y. Sonobuoy and magnetic detector joint search simulation study[J]. Journal of System Simulation, 2008, 20(16):4357-4359(in Chinese).[4] LELIAK P. Identification and evaluation of magnetic-field source of magnetic airborne detector equipped aircraft[J]. IEEE Transactions on Aerospace & Navigational Electronics, 1961, 8(3):95-105.[5] HIROTA M, FURUSE T, EBANA K, et al. Magnetic detection of a surface ship by an airborne LTS SQUID MAD[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1):884-887.[6] 韩瑞新, 李春洪, 陆勤夫, 等. 航空反潜中的磁探仪系统仿真研究[J]. 系统仿真学报, 2009, 21(9):2753-2757. HAN R X, LI C H, LU Q F, et al. Simulation for magnetic anomaly detection in air anti-Submarine[J]. Journal of System Simulation, 2009, 21(9):2753-2757(in Chinese).[7] 王珺琳, 刘金荣, 吕政良,等. 基于空间磁场模型的航空磁探测分析方法[J]. 中国电子科学研究院学报, 2016, 11(1):32-35. WANG J L, LIU J R, LV Z L, et al. The aeromagnetic exploration analysis method based on spatial magnetic field model[J]. Journal of China Academy of Electronics and Information Technology, 2016, 11(1):32-35(in Chinese).[8] 汪晓雨, 刘忠乐. 基于小型运动载体的潜艇磁诱饵磁场产生方法[J]. 水雷战与舰船防护, 2006, 14(4):18-21. WANG X Y, LIU Z L. Method for generating magnetic field of submarine magnetic decoy based on small motion carrier[J]. Mine Warfare & Ship Self-Defence, 2006, 14(4):18-21(in Chinese).[9] CZIPOTT P V, PERRY A R, WHITECOTTON B R, et al. Magnetic detection and tracking of military vehicles:Technical Report, AD-A409217[R]. Washington, D.C.:NASA, 2002.[10] SHEINKER A, FRUMKIS L, GINZBURG B, et al. Magnetic anomaly detection using a three-axis magnetometer[J]. IEEE Transactions on Magnetics, 2009, 45(1):160-167.[11] TEIXEIRA F. Magnetic navigation and tracking of underwater vehicles[C]//Control Applications in Marine Systems, 2013:239-244.[12] PANG H, PAN M, WAN C, et al. Integrated compensation of magnetometer array magnetic distortion field and improvement of magnetic object localization[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(9):5670-5676.[13] AHN S, KIM J. Magnetic field design for high efficient and low EMF wireless power transfer in on-line electric vehicle[C]//European Conference on Antennas and Propagation, 2011:3979-3982.[14] HURTADO V R, GONZALEZ L J. Simulation of the magnetic field generated by square shape Helmholtz coils[J]. Applied Mathematical Modeling, 2016, 40(23):9835-9847.[15] BEIRANVAND R. Magnetic field uniformity of the practical tri-axial Helmholtz coils systems[J]. Review of Scientific Instruments, 2014, 85(5):08D904-1.[16] 胡彬. 地磁屏蔽室内磁场模拟与控制技术研究[D]. 南京:南京理工大学, 2014:4-19. HU B. Research on magnetic field simulation and control technology in geomagnetic shielding room[D]. Nanjing:Nanjing University of Science& Technology, 2014:4-19(in Chinese).[17] 刘忠乐,石剑,文无敌. 磁诱饵空中磁场模型及其试验验证[J]. 探测与控制学报, 2015, 37(1):1412-1417. LIU Z L, SHI J, WEN W D. Validation experiment method of magnetic bait's magnetic field model[J]. Journal of Detection & Control, 2015, 37(1):1412-1417(in Chinese).[18] 林春生,龚沈光. 舰船物理场[M]. 2版. 北京:兵器工业出版社, 2007:54-55. LIN C S, GONG S G. Ship physical field[M]. 2nd ed. Beijing:The Publishing House of Ordnance Industry, 2007:54-55(in Chinese).[19] SORBJAN Z. Encyclopedia of Environ metrics[M]. Newyork:John Wiley & Sons, Ltd, 2013.[20] 王小平, 曹立明. 遗传算法:理论、应用与软件实现[M]. 西安:西安交通大学出版社, 2002. WANG X P, CAO L M. Genetic algorithm:Theory, application and software implementation[M]. Xi'an:Xi'an Jiaotong University Press, 2002(in Chinese).[21] 武殿梁, 黄海量, 丁玉成,等. 基于遗传算法和最小二乘法的曲面匹配[J]. 航空学报, 2002, 23(3):285-288. WU D L, HUANG H L, DING Y C, et al. Surfaces matching algorithm based on genetic algorithm and least square criterion[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(3):285-288(in Chinese).[22] 温正雄, 刘忠乐. 非接触扫雷具设计原理[M]. 北京:海潮出版社, 2001:72-98. WEN Z X, LIU Z L. Design principle of non-contact mine sweeper[M]. Beijing:Haichao Press, 2001:72-98(in Chinese).