材料工程与机械制造

不同经编织物对预成型体定型工艺性及渗透特性的影响

  • 吴凯文 ,
  • 杨晋 ,
  • 李龙 ,
  • 赵潇然 ,
  • 刘刚 ,
  • 李韶亮 ,
  • 肇研
展开
  • 1. 北京航空航天大学 能源与动力工程学院, 北京 100083;
    2. 北京航空航天大学 材料科学与工程学院, 北京 100083;
    3. 中航工业复合材料技术中心 中航复合材料有限责任公司, 北京 100095;
    4. 空军驻北京地区军事代表室, 北京 100038

收稿日期: 2017-03-11

  修回日期: 2017-05-19

  网络出版日期: 2017-05-18

Influence of different warp knitted fabrics on processability and permeability of preform

  • WU Kaiwen ,
  • YANG Jin ,
  • LI Long ,
  • ZHAO Xiaoran ,
  • LIU Gang ,
  • LI Shaoliang ,
  • ZHAO Yan
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100083, China;
    2. School of Materials Science and Engineering, Beihang University, Beijing 100083, China;
    3. Beijing Institute of Aeronautical Materials, AVIC Composites Center, Beijing 100095, China;
    4. Military Representative Office of Air Force Beijing, Beijing 100038, China

Received date: 2017-03-11

  Revised date: 2017-05-19

  Online published: 2017-05-18

摘要

针对单轴、双轴、四轴三种不同国产T300碳纤维经编织物,通过对其预成型体进行定型效果、压缩特性和渗透特性试验,表征在相同的定型工艺及定型剂用量下,不同经编织物对预成型体定型工艺性及渗透特性的影响。结果表明:在C型回弹试验及厚度回弹试验中,织物表面铺撒相同质量分数的定型剂,四轴经编织物预成型体厚度回弹约1.2%,C型回弹6°,定型效果最佳。此外,纤维束宽和束间距的变化会引起定型效果的差异。厚度压缩试验表明,四轴经编织物的压缩性能最佳。面内渗透率试验表明,铺撒定型剂后四轴经编织物面内渗透率增加约15%。证实了铺撒相同质量分数定型剂后,四轴经编织物的树脂传递模塑成型工艺(RTM)性能优异,定型效果最佳。

本文引用格式

吴凯文 , 杨晋 , 李龙 , 赵潇然 , 刘刚 , 李韶亮 , 肇研 . 不同经编织物对预成型体定型工艺性及渗透特性的影响[J]. 航空学报, 2017 , 38(10) : 421238 -421238 . DOI: 10.7527/S1000-6893.2017.421238

Abstract

In the paper,uniaxial,biaxial and quadriaxial warp knitted fabrics made of domestic T300 carbon fibers-plain were studied,and tests on the settting effect,compressibility and permeability of the preforms were carried out to show the influence of different warp knitted fabrics on setting processability and permeability with the same setting process and amount of tackifer.It is found that during tests on springback of C-shape and thickness,the springback of the thickness of the quadriaxial fabric is about 1.2% and the springback of the C-shape of the quadriaxial fabric is 6°,quadriaxial fabric's shape-fixing performance is the best with the same mass fraction.Besides,the forming results changes with fiber beam width and beam spacing.The test of preform compressibility shows that the quadriaxial fabric is the best.The test of permeability of the preform in-plane shows that quadriaxial preform's in-plane permeability increases by about 15% after the scatteration of the resin.It is confirmed that the quadriaxial fabric has the best RTM process performance and shape-fixing performance after the same amount of resin is scattered on the warp knitted fabric.

参考文献

[1] 陈祥宝. 先进树脂基复合材料的发展[J]. 航空材料学报, 1998, 20(3):46-54. CHEN X B. The development and application of advanced resin-based composite materials[J]. Journal of Aeronautical Materials, 1998, 20(3):46-54(in Chinese).
[2] 蔡吉喆, 肇研, 刘慧, 等. 新型RTM预成型体用定型剂的研制[J]. 复合材料学报, 2010, 27(1):18-24. CAI J Z, ZHAO Y, LIU H, et al. Research on novel tackifier for perform on RTM[J]. Acta Materiae Compositae Sinica, 2010, 27(1):18-24(in Chinese).
[3] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).
[4] KO F K. Preform fiber architecture for ceramic matrix performs[J]. Ceramic Bull, 1989, 68(2):401-414.
[5] SCARDINO F L, KO F K. Triaxial woven fabrics[J]. Textile Research Journal, 1981, 51(2):203-221.
[6] MCCARTHY S P, KIM Y R. Resin flow through fiber reinforcement during composite processing[J]. Society of Aerospace Material and Process Engineers, 1991, 22(3):156-170.
[7] LONG A C. Design and manufacture of textile composites[M]. Cambridge:Woodhead Publishing Limited, 2005:42-89.
[8] PARK T W, NA U J, LAN C. Compressive behavior of concrete cylinders confined by narrow strips of CFRP with spacing[J]. Composites Part B:Engineering, 2008, 39(7-8):1093-1103.
[9] CHEN B X, CHOU T W. Compaction of woven-fabric preforms:Nesting and multi-layer deformation[J]. Composites Science and Technology, 2000, 60(12-13):2223-2231.
[10] LI L, ZHAO Y, YANG J. An experimental investigation of compaction behavior of carbon non-crimp fabrics for liquid composite molding[J]. Journal of Materials Science, 2015, 50(7):2960-2972.
[11] 张彦飞, 刘亚青, 杜瑞奎, 等. LCM成型工艺中纤维预成型技术研究进展[J]. 玻璃钢/复合材料, 2006, 3(6):42-45. ZHANG Y F, LIU Y Q, DU R K, et al. Research progress in tackified fiber perform technology for LCM[J]. Fiber Reinforced Plastics/Composites, 2006, 3(6):42-45(in Chinese).
[12] 李龙, 段跃新, 李超, 等. 双轴向经编织物T700/BMI6421复合材料力学性能[J]. 复合材料学报, 2011, 28(6):92-97. LI L, DUAN Y X, LI C, et al. Mechanical properties of biaxial warp-knitted fabric T700/BMI6421 composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6):92-97(in Chinese).
[13] 李阳, 肇研, 刘刚, 等. 国产CCF300碳纤维及其NCF织物的性能[J]. 航空学报, 2014, 35(10):2889-2900. LI Y, ZHAO Y, LIU G, et al. Properties of domestic CCF300 carbon fiber and its NCP fabrics[J]. Acta Aeronautica at Astronautica Sinica, 2014, 35(10):2889-2900(in Chinese).
[14] 李丽英, 孟松鹤, 张涛, 等. 定型剂对单轴向经编织物复合材料力学性能影响的实验研究[J]. 复合材料学报, 2014, 31(2):304-316. LI L Y, MENG S H, ZHANG T, et al. Experimental study on effects of tackifier on mechanical properties of composites reinforced by uniaxial warp-knitting fabrics[J]. Acta Materiae Compositae Sinica, 2014, 31(2):304-316(in Chinese).
[15] 丁江平, 潘利剑, 范欣愉, 等. 国产CCF300碳纤维4轴向无屈曲织物层合板力学性能对比研究[J]. 高科技纤维与应用, 2010, 35(5):26-31. DING J P, PAN L J, FAN X Y, et al. Study on the mechanical properties of domestic CCF300 carbon fiber four axial directions non-crimp fabric laminates[J]. Hi-Tech Fiber & Application, 2010, 35(5):26-31(in Chinese).
[16] 何海东, 贾玉玺, 丁妍羽, 等. 无弯曲纤维织物面内渗透率的结构相关性[J]. 复合材料学报, 2011, 28(5):70-76. HE H D, JIA Y X, DING Y Y, et al. Structure relationship of the in-plane permeability of non-crimped fabrics[J]. Acta Materiae Compositae Sinica, 2011, 28(5):70-76(in Chinese).
[17] 杜洪雨, 柳作宇, 刘杰. 大型民用飞机复合材料承压框结构及工艺发展[C]//第17届全国复合材料学术会议, 2012:10. DU H Y, LIU Z Y, LIU J. Structure & process methods development of composite aft pressure bulkhead for large civil aircraft[C]//17th National Conference on Composite Materials, 2012:10(in Chinese).
[18] LEBRUN G, BUREAU M N, DENAULT J. Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics[J]. Composite Structures, 2003, 61(4):341-352.
[19] HARRISON P, ABDIWI F, GUO Z, et al. Characterising the shear-tension coupling and wrinkling behaviour of woven engineering fabrics[J]. Composites Part A:Applied Science & Manufacturing, 2012, 43(6):903-914.
[20] 乌云其其格, 益小苏. RTM双马树脂用定型剂研究[J]. 玻璃钢/复合材料, 2008, 27(5):37-40. WUYUN Q Q G, YI X S. Research on the tackifier for RTM bismaleimide-based resin[J]. Fiber Reinforced Plastics/Composites, 2008, 27(5):37-40(in Chinese).
[21] CHEN B, CHOU T W. Compaction of woven-fabric preforms in liquid composite molding processes:single-layer deformation[J]. Composites Science and Technology, 1999, 59(10):1519-1526.
[22] HOESA K, DINESCUA D, SOL H. Study of nesting induced scatter of permeability values in layered reinforcement fabrics[J]. Composites Part A:Applied Science & Manufacturing, 2004, 35(12):1407-1418.
[23] 张嘉阳, 刘刚, 李龙. 国产CCF300碳纤维单向织物液体成型工艺性及其复合材料力学性能[J]. 复合材料学报, 2016, 33(1):17-26. ZHANG J Y, LIU G, LI L. Processability of domestic CCF300 carbon fiber unidirectional fabrics for liquid molding and mechanical properties of their composites[J]. Acta Materiae Compositae Sinica, 2016, 33(1):17-26(in Chinese).
[24] 马悦, 李炜, 梁子青. 经编多轴向织物的压缩性能研究[J]. 材料工程, 2007, 33(11):28-32. MA Y, LI W, LIANG Z Q. Compressibility and spring-back behavior of multi-axial warp knitting fabric[J]. Journal of Materials Engineering, 2007, 33(11):28-32(in Chinese).
[25] 刘刚, 李伟东, 李龙, 等. "离位"增韧预成型体压缩特性[J]. 复合材料学报, 2015, 32(4):1194-1200. LIU G, LI W D, LI L, et al. Compaction properties of "exsitu" toughened preforms[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1194-1200(in Chinese).
[26] 郭启微, 吴晓青. 复合材料中平纹机织物的压缩性能[J]. 纺织学报, 2008, 29(5):42-45. GUO Q W, WU X Q. Compressibility of plain-woven fabrics in composite[J]. Journal of Textile Research, 2008, 29(5):42-45(in Chinese).
[27] 陈萍, 李宏运, 陈祥宝. 铺层方式对织物渗透率的影响[J]. 复合材料学报, 2001, 18(1):30-33. CHEN P, LI H Y, CHEN X B. Effect of layers on permeability[J]. Acta Materiae Compositae Sinica, 2001, 18(1):30-33(in Chinese).
[28] LOUIS M, HUBER U. Investigation of shearing effect on the permeability of woven fabrics and implementation into LCM simulation[J]. Composites Science and Technology, 2003, 63(14):2081-2088.
[29] 李文晓, 薛元德. 树脂传递模塑工艺中渗透率的测定[J]. 建筑材料学报, 2000, 3(3):258-263. LI W X, XUE Y D. Permeability measurement in resin transfer molding[J]. Journal of Building Material, 2000, 3(3):258-263(in Chinese).
[30] 祝君军, 段跃新, 陈吉平, 等. 碳纤维经编织物定型参数及渗透特性[J]. 复合材料学报, 2012, 29(3):42-48. ZHU J J, DUAN Y X, CHEN J P, et al. Packifier parameters and permeability characteristics of non-crimp stitched carbon fabrics[J]. Acta Materiae Compositae Sinica, 2012, 29(3):42-48(in Chinese).

文章导航

/