行星机构的可靠性分析与计算
收稿日期: 2017-01-17
修回日期: 2017-02-17
网络出版日期: 2017-05-18
基金资助
国家科技支撑计划(2014BAF08B01);国家自然科学基金(51335003)
Reliability analysis and calculation for planetary mechanism
Received date: 2017-01-17
Revised date: 2017-02-17
Online published: 2017-05-18
Supported by
National Key Technology Research and Development Program of China (2014BAF08B01);National Natural Science Foundation of China (51335003)
行星机构的结构设计缺陷、制造与安装误差、支撑构件刚度不足等原因可能会使系统发生一定程度的偏载,从而会影响整个机构的使用寿命与可靠性。利用最小次序统计量的概念建立了行星齿轮系的可靠度计算模型,模型反映了偏载对齿轮系可靠性的影响。首先,对行星机构进行了详细的运动学和力学分析,计算得到了各个齿轮的随机载荷历程。根据Miner线性疲劳累积损伤法则,将随机载荷历程转化为等效恒幅载荷谱,并将其作为可靠性模型的载荷输入变量。然后,将特定齿轮的疲劳寿命数据进行统计处理,将统计结果作为可靠性模型的强度输入变量。最后,根据模型的计算结果定量地说明了偏载对行星齿轮系可靠性的影响程度,同时利用随机截尾数据处理方法对可靠性模型的有效性进行了验证。
李铭 , 谢里阳 , 丁丽君 . 行星机构的可靠性分析与计算[J]. 航空学报, 2017 , 38(8) : 421145 -421145 . DOI: 10.7527/S1000-6893.2017.421145
For a planetary mechanism, structural design defects, manufacturing and installation errors, lack of stiffness of the support structure and other factors may cause to a certain degree unequal load sharing, thus affecting the life and reliability of the entire body. A reliability prediction model for the planetary gear set is established by using the concept of minimum order statistics, and the model reflects the influence of partial load on the reliability of the planetary gear set. A detailed kinematics and mechanics analysis of the mechanism is carried out, and the random load histories of each gear are calculated. According to the law of Miner linear fatigue cumulative damage, the random load histories are transformed into equivalent constant amplitude load spectrums, which are taken as the load input variable for the reliability model. The fatigue life data of specific gears are then statistically processed, and the treated life information is used as the strength input variable for the reliability model. According to the prediction result of the model, the adverse effects of partial load on the reliability of the planetary gear set are quantitatively explained, and the effectiveness of the model is verified by randomly censored data processing.
[1] HIDAKA T, TERAUCHI Y. Dynamic behavior of planetary gear (1st report load distribution in planetary gear)[J]. Bulletin of the JSME, 1976, 19(132):690-698.
[2] HIDAKA T, TERAUCHI Y, DOHI K. On the relation between the run out errors and the motion of the center of sun gear in a stoeckicht planetary gear[J]. Bulletin of the JSME, 1979, 22(167):748-754.
[3] HIDAKA T, TERAUCHI Y, NAGAMURA K. Dynamic behavior of planetary gear (7th report influence of the thickness of ring gear)[J]. Bulletin of the JSME, 1979, 22(170):1142-1149.
[4] MULLER H W. Epicyclic drive trains[D]. Detroit:Wayne State University, 1982.
[5] SEAGER D L. Load sharing among planet gears:700178[R]. SAE, 1970.
[6] KASUBA R, AUGUST R. Torsional vibrations and dynamic loads in a basic planetary gear system[J]. Journal of Vibration and Acoustics, 1986, 108(3):348-353.
[7] MA P, BOTMAN M. Load sharing in a planetary gear stage in the presence of gear errors and misalignments[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1985, 107:1-7.
[8] JARCHOW F. Development status of epicyclic gears[C]//ASME International Power Transmission and Gearing Conference. New York:ASME, 1989:48-53.
[9] HAYASHI T, LI Y, HAYASHI I. Measurement and some discussions on dynamic load sharing in planetary gears[J]. Bulletin of the JSME, 1986, 29(253):2290-2297.
[10] KAHRAMAN A. Load sharing characteristics of planetary transmissions[J]. Mechanism and Machine Theory, 1994, 29(8):1151-1165.
[11] KAHRAMAN A. Static load sharing characteristics of transmission planetary gear sets:Model and experiment:1999-01-1050[R]. SAE, 1999.
[12] YANG Q. Fatigue test and reliability design of gears[J]. International Journal of Fatigue, 1996, 18(3):171-177.
[13] ZHANG Y M, LIU Q, WEN B. Practical reliability-based design of gear pairs[J]. Mechanism and Machine Theory, 2003, 38:1363-1370.
[14] ZHANG G Y, WANG G Q, LI X F. Global optimization of reliability design for large ball mill gear transmission based on the kriging model and genetic algorithm[J]. Mechanism and Machine Theory, 2013, 69(11):321-336.
[15] NEJAD A R, GAO Z, MOAN T. On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drive trains[J]. International Journal of Fatigue, 2014, 61:116-128.
[16] LI Y F, VALLA S, ZIO E. Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation[J]. Renewable Energy, 2015, 83:222-233.
[17] GUERINE A, ELHAMI A, WALHA L. A perturbation approach for the dynamic analysis of one stage gear system with uncertain parameters[J]. Mechanism and Machine Theory, 2015, 92:113-126.
[18] HASL C, LIU H, OSTER P. Method for calculating the tooth root stress of plastic spur gears meshing with steel gears under consideration of deflection-induced load sharing[J]. Mechanism and Machine Theory, 2017, 111:152-163.
[19] CONCLI F, GORLA C. Numerical modeling of the power losses in geared transmissions:Windage, churning and cavitation simulations with a new integrated approach that drastically reduces the computational effort[J]. Tribology International, 2016, 103:58-68.
[20] WANG L M, SHAO Y M. Fault mode analysis and detection for gear tooth crack during its propagating process based on dynamic simulation method[J]. Engineering Failure Analysis, 2017, 71:166-178.
[21] GLODEZ S, ABERSEK B. A computational model for determination of service life of gears[J]. International Journal of Fatigue, 2002, 24(10):1013-1020.
[22] GLODEZ S, ABERSEK B. Evaluation of the service life of gears in regard to surface pitting[J]. Engineering Fracture Mechanics, 2004, 71(4):429-438.
[23] ABERSEK B, FLASKER J. Review of mathematical and experimental models for determination of service life of gears[J]. Engineering Fracture Mechanics, 2004, 71(4):439-453.
[24] BRITISH STANDARD. ISO 6336-3 Calculation of load capacity of spur and helical gears, part 3:Calculation of tooth bending strength[S]. 2006.
[25] BUCH A. Fatigue strength calculation[M]. 1988:169-170.
[26] AKATA E, ALTINBALIK M T, CAN Y. Three point load application in single tooth bending fatigue test for evaluation of gear blank manufacturing methods[J]. International Journal of Fatigue, 2004, 26(7):785-789.
[27] SAVARIA V, BRIDIER F, BOCHER P. Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears[J]. International Journal of Fatigue, 2016, 85:70-84.
[28] DENGO C. Experimental analysis of bending fatigue strength of plain and notched case-hardened gear steels[J]. International Journal of Fatigue, 2015, 80:145-161.
[29] CONRADO E, GORLA C, DAVOLI P. A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications[J]. Engineering Failure Analysis, 2017, 78(8):41-54.
[30] 安宗文, 张宇, 刘波. 风电齿轮箱零件寿命分布函数的确定方法[J]. 电子科技大学学报, 2014, 43(6):950-954. AN Z W, ZHANG Y, LIU B. A method to determine the life distribution function of components for wind turbine gearbox[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(6):950-954(in Chinese).
[31] OLSSON E, OLANDER A, OBERG M. Fatigue of gears in the finite life regime-experiments and probabilistic modelling[J]. Engineering Failure Analysis, 2016, 62(1):276-286.
[32] FERNANDES P. Tooth bending fatigue failures in gears[J]. Engineering Failure Analysis, 1996, 3(3):219-225.
[33] MACKALDENER M, OLSSON M. Interior fatigue fracture of gear teeth[J]. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23(4):283-292.
[34] MACKALDENER M, OLSSON M. Tooth interior fatigue fracture-computational and material aspects[J]. International Journal of Fatigue, 2001, 23(4):329-340.
[35] 林左鸣. 世界航空发动机手册[M]. 北京:航空工业出版社, 2012:240-270. LIN Z M. World aero engine manual[M]. Beijing:Aviation Industry Press, 2012:240-270(in Chinese).
/
〈 | 〉 |