电子电气工程与控制

一种多智能体协同信息一致性算法

  • 陈旿 ,
  • 张鑫 ,
  • 金鑫 ,
  • 李泽宏 ,
  • 洪亮
展开
  • 西北工业大学 自动化学院, 西安 710072

收稿日期: 2017-03-07

  修回日期: 2017-05-12

  网络出版日期: 2017-05-12

基金资助

陕西省重点研发计划(2017GY-069)

A cooperative information consensus algorithm for multi-agent system

  • CHEN Wu ,
  • ZHANG Xin ,
  • JIN Xin ,
  • LI Zehong ,
  • HONG Liang
Expand
  • School of Automation, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-03-07

  Revised date: 2017-05-12

  Online published: 2017-05-12

Supported by

Major Research Project of Shaanxi Province (2017GY-069)

摘要

以无人机(UAVs)/导弹集群为代表的多智能体协同作战在未来战场中占有重要地位。协同信息的共享和一致性是多智能体系统完成协同、编队、集结、同步等协同任务的关键基础和前提。首先,基于邻居系统和团势能建立了信息一致性模型,将多智能体的协同信息的偏差映射为团势能。然后,通过以并行能量最小化求解马尔可夫随机场最大后验概率的方法实现了分布式无中心条件下的协同信息一致性。与传统的一致性算法相比,所提出的算法引入了虚拟基准的概念。当无外部基准输入时,基于平均场方法,通过邻居之间的协同信息交互建立虚拟基准;当存在领航节点或虚拟领航节点时,将领航节点协同信息的状态及状态导数作为虚拟基准。仿真结果表明:所得出的算法具有对网络规模不敏感、快速收敛、高鲁棒性的优点;对有/无基准输入的情况可采用相同的算法,体现了算法具有较好的适应性。

本文引用格式

陈旿 , 张鑫 , 金鑫 , 李泽宏 , 洪亮 . 一种多智能体协同信息一致性算法[J]. 航空学报, 2017 , 38(12) : 321222 -321222 . DOI: 10.7527/S1000-6893.2017.321222

Abstract

Multi-agent cooperative operation plays an important role in the cyberspace war, and the main application lies in the field of multiple Unmanned Aerial Vehicles (UAVs)/multi-missile collaborative cluster. Sharing collaborative information and consistency are the foundation and prerequisite for the multi-agent to complete collaborative tasks such as coordination, formation, flocking and synchronization. A consensus information model is established based on the neighbor system and the cluster potential, and the bias of the cooperative information is mapped to the cluster potential energy. By using the minimization of parallel energy to solve the maximum a posteriori probability of the Markov random field, cooperative information reaches a consensus with distributed and non center condition. Different from the traditional consensus algorithm, the algorithm proposed introduces the concept of virtual reference. A virtual reference is established by cooperative information interaction among the neighbors by using the mean field theory with no external reference input. When the pilot node or the virtual pilot node exists, the state and its derivative of the pilot node cooperative information are used as the virtual reference. Simulation results show that the proposed algorithm has the advantages of insensitivity to network scale, fast convergence and high robustness. The algorithm can be also used in the presence/absence of reference input, meaning that the algorithm has great adaptability.

参考文献

[1] CAO Y, YU W, REN W, et al. An overview of recent progress in the study of distributed multi-agent coordination[J]. IEEE Transactions on Industrial Informatics, 2012, 9(1):427-438.[2] 王寅秋. 非线性多智能体系统一致性分布式控制[D]. 北京:北京理工大学, 2015:12-21. WANG Y Q. Distributed consensus for non-linear multi-agent systems[D]. Beijing:Beijing Institute of Technology, 2015:12-21(in Chinese).[3] 张庆杰. 基于一致性理论的多UAV分布式协同控制与状态估计方法[D]. 长沙:国防科学技术大学,2011:10-31. ZHANG Q J. Distributed cooperative control and statement estimation for networked multiple UAVs based on consensus theory[D]. Changsha:National University of Defense Technology, 2011:10-31(in Chinese).[4] TSITSIKLIS J N. Problems in decentralized decision making and computation[J]. Problems in Decentralized Decision Making & Computation, 1984, 43(9):134-139.[5] TSITSIKLIS J, BERTSEKAS D, ATHANS M. Distributed asynchronous deterministic and stochastic gradient optimization algorithms[J]. IEEE Transactions on Automatic Control, 1984, 31(9):803-812.[6] BENEDIKTSSON J A, SWAIN P H. Consensus theoretic classification methods[J]. IEEE Transactions on Systems Man & Cybernetics, 1992, 22(4):688-704.[7] VICSEK T, CZIRÍK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6):1226.[8] JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control, 2003, 48(6):988-1001.[9] HUSSEIN I I, STIPANOVIC D M. Effective coverage control for mobile sensor networks with guaranteed collision avoidance[J]. IEEE Transactions on Control Systems Technology, 2007, 15(4):642-657.[10] LEONARD N E, PALEY D A, LEKIEN F, et al. Collective motion, sensor networks, and ocean sampling[J]. Proceedings of the IEEE, 2007, 95(1):48-74.[11] MURRAY R M. Recent research in cooperative control of multivehicle systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(5):571-583.[12] OLSHEVSKY A, TSITSIKLIS J N. Convergence speed in distributed consensus and averaging[J]. SIAM Journal on Control and Optimization, 2009, 48(1):33-55.[13] HOLSAPPLE R W, KINGSTON D B. Cooperative control of autonomous systems[J]. International Journal of Robust and Nonlinear Control, 2011, 21(12):1355-1357.[14] REN W, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5):655-661.[15] LI S, WANG J, LUO X, et al. A new framework of consensus protocol design for complex multi-agent systems[J]. Systems & Control Letters, 2011, 60(1):19-26.[16] LI T, ZHANG J F. Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises[J]. IEEE Transactions on Automatic Control, 2010, 55(9):2043-2057.[17] BRAGINSKY B, BARUCH A, GUTERMAN H. Tracking of autonomous underwater vehicles using an autonomous surface vehicle with ranger interrogator system[C]//OCEANS 2016 MTS/IEEE Monterey. Piscataway, NJ:IEEE Press, 2016:1-5.[18] THUSEETHAN S, VASANTHAPRIYAN S. Multi-agent based ocean-transport and traffic controlling system:A simulation[C]//20155th National Symposium on Information Technology:Towards New Smart World (NSITNSW). Piscataway, NJ:IEEE Press, 2015:1-5.[19] VAZQUEZ-OLGUIN M, SHMALIY Y S, IBARRA-MANZANO O. Design of blind distributed UFIR filter based on average consensus for WSNs[C]//201613th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Piscataway, NJ:IEEE Press, 2016:1-6.[20] BOLOGNANI S, CARLI R, LOVISARI E, et al. A randomized linear algorithm for clock synchronization in multi-agent systems[C]//2012 IEEE 51st IEEE Conference on Decision and Control (CDC). Piscataway, NJ:IEEE Press, 2012:20-25.[21] 吴森堂. 导弹自主编队协同制导控制技术[M]. 北京:国防工业出版社, 2015:13-150. WU S T.Cooperative guidance & control of missiles autonomous formation[M]. Beijing:National Defence Industry Press, 2015:13-150(in Chinese).[22] 曾斌, 姚路, 魏军. 基于平均场模型的传感器网络信息共享算法研究[J]. 传感技术学报, 2009(10):1486-1491. ZENG B, YAO L, WEI J. A mean field model based information sharing algorithm for wireless sensor networks[J]. Chinese Journal of Sensors and Actuators, 2009(10):1486-1491(in Chinese).[23] LI S Z. Markov random field modeling in image analysis[M]. Berlin:Springer, 2009:357.[24] KOPETZ H, OCHSENREITER W. Clock synchronization in distributed real-time systems[J]. IEEE Transactions on Computers, 1987, 100(8):933-940.[25] MARÍTI M, KUSY B, SIMON G, et al. The flooding time synchronization protocol[C]//Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems. New York:ACM, 2004:39-49.[26] GAST M. 802.11无线网络权威指南[M]. 南京:东南大学出版社, 2007:52-53. GAST M. 802.11 wireless networks:The definitive guide[M]. Nanjing:Southeast University Press, 2007:52-53(in Chinese).[27] 丁尚文. 图的最大和次小拉普拉斯特征值[D].成都:电子科技大学, 2008. DING S W. The largest and the second smallest eigenvalue of graphs[D]. Chengdu:University of Electronic Science and Technology of China, 2008(in Chinese).[28] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533.[29] AYSAL T C, ORESHKIN B N, COATES M J. Accelerated distributed average consensus via localized node state prediction[J]. IEEE Transactions on Signal Processing, 2009, 57(4):1563-1576.[30] 刘瑞芳. 图的最小特征根和拉普拉斯谱半径[D]. 上海:华东师范大学,2010. LIU R F. The least eigenvalue and the laplacian spectral radius of graphs[D]. Shanghai:East China Normal University, 2010(in Chinese).[31] 汪天飞, 李彬. 图的最大拉普拉斯特征值的上界[J]. 四川师范大学学报(自然科学版), 2007, 30(2):191-193. WANG T F, LI B. New upper bounds for the laplacian spectral radius of graphs[J]. Journal of Sichuan Normal University (Natural Science), 2007, 30(2):191-193(in Chinese).[32] WEI R, RANDAL W D. 多智能体协同控制中的分布式一致性——理论与应用[M].北京:电子工业出版社,2014:57-58. WEI R, RANDAL W D. Distributed consensus in multi-vehicle cooperative control-Theory and applications[M]. Beijing:Publishing House of Electronics Industry, 2014:57-58(in Chinese).
文章导航

/