流体力学与飞行力学

再入飞行器沉浮特性近似解析及应用

  • 顾杰 ,
  • 张曙光 ,
  • 杨帆 ,
  • 王保印
展开
  • 1. 北京航空航天大学 交通科学与工程学院, 北京 100083;
    2. 成都飞机设计研究所, 成都 610091

收稿日期: 2017-02-15

  修回日期: 2017-05-12

  网络出版日期: 2017-05-12

Approximate analytical analysis for phugoid characteristic of reentry vehicles and its applications

  • GU Jie ,
  • ZHANG Shuguang ,
  • YANG Fan ,
  • WANG Baoyin
Expand
  • 1. School of Transportation Science and Engineering, Beihang University, Beijing 100083, China;
    2. Chengdu Aircraft Design and Research Institute, Chengdu 610091, China

Received date: 2017-02-15

  Revised date: 2017-05-12

  Online published: 2017-05-12

摘要

采用基于平衡滑翔的数值或解析预测-校正再入制导方法的再入飞行器,从初始下降段到平衡滑翔段过渡或出现较大预测偏差时易产生沉浮振荡,且随着近年来所研究飞行器升阻比的增加,沉浮振荡更加明显,从而引起了研究者对高超声速沉浮特性的重新审视。首先,通过三阶纵向动态方程及平衡滑翔条件推导出了形式简洁、能直观表达主要影响因素的再入飞行器高超声速沉浮特性近似解。在此基础上,分析发现高超声速沉浮阻尼特性随高度的变化规律主要由轨道速度比和沉浮修正参数主导,澄清了以往对大气密度梯度参数影响的猜测。最后,推导出再入轨迹振荡抑制器设计的近似解析关系,进一步完善了基于平衡滑翔的数值或解析预测-校正再入制导方法,仿真验证表明该方法能够有效抑制再入轨迹的沉浮振荡。

本文引用格式

顾杰 , 张曙光 , 杨帆 , 王保印 . 再入飞行器沉浮特性近似解析及应用[J]. 航空学报, 2017 , 38(10) : 121174 -121174 . DOI: 10.7527/S1000-6893.2017.121174

Abstract

For the hypersonic reentry vehicle adopting the equilibrium glide-based numerical or analytical predictor-corrector guidance,the phugoid oscillation of the reentry trajectory is prone to be caused at the transition point from the initial descent to the equilibrium glide or by large prediction deviations.With the increase of the lift-to-drag ratio of reentry vehicles under research in recent years,the phugoid oscillation becomes more noticeable to cause researchers to re-examine the hypersonic phugoid characteristic.A concise approximate analytical solution for intuitively expressing the dominate factors for hypersonic phugoid characteristic of reentry vehicles is derived,according to three order longitudinal flight dynamics equations and the equilibrium glide condition.It is found that the hypersonic phugoid damping characteristic mainly depends on the ratio of flight speed to orbital speed and the phugoid correction factor,rather than on the atmospheric density-gradient parameter considered by previous researchers.A controller is designed to eliminate the trajectory oscillation by using the approximate relation derived,further improving the equilibrium glide based numerical or analytical predictor-corrector guidance.Effectiveness of the method is verified by the simulation results.

参考文献

[1] JOHNSON W R, LU P, STACHOWIAK S J. Automated re-entry system using FNPEG:AIAA-2017-1899[R]. Reston, VA:AIAA, 2017.
[2] LU P, BRUNNER C W, STACHOWIAK S J, et al. Verification of a fully numerical entry guidance algorithm:AIAA-2016-0377[R]. Reston, VA:AIAA, 2016.
[3] LU P. Entry guidance:A unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):713-728.
[4] LU P, FORBES S, BALDWIN M. Gliding guidance of high L/D hypersonic vehicles:AIAA-2013-4648[R]. Reston, VA:AIAA, 2013.
[5] WEBB K, LU P. Entry guidance by onboard trajectory planning and tracking:AIAA-2016-0279[R]. Reston, VA:AIAA, 2016.
[6] PUTNAM Z R, GRANT M J, KELLY J R, et al. Feasibility of guided entry for a crewed lifting body without Angle-of-Attack control[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):729-740.
[7] XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273-1281.
[8] JOSHI A, SIVAN K, AMMA S S. Predictor-corrector reentry guidance algorithm with path constraints for atmospheric entry vehicles[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1307-1318.
[9] LU P. Asymptotic analysis of quasi-equilibrium glide in lifting entry flight[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3):662-670.
[10] SHEN Z J, LU P. Onboard generation of Three-Dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
[11] SHEN Z J. On-board three-dimensional constrained entry flight trajectory generation[D]. Ames, Iowa:Iowa State University, 2002:19-64.
[12] HARPOLD J C, GRAVES C A. Shuttle entry guidance[J]. Journal of Astronautical Sciences, 1979, 37(3):239-268.
[13] 胡军, 张钊. 载人登月飞行器高速返回再入制导技术研究[J]. 控制理论与应用, 2014, 31(12):1678-1685. HU J, ZHANG Z. A study on the reentry guidance for a manned lunar return vehicle[J]. Control Theory & Applications, 2014, 31(12):1678-1685(in Chinese).
[14] 崔乃刚, 黄荣, 傅瑜, 等. 基于匹配渐进展开的跳跃式再入解析预测-校正制导律设计[J]. 航空学报, 2015, 36(8):2764-2772. CUI N G, HUANG R, FU Y, et al. Design of analytical prediction-correction skip entry guidance law based on matched asymptotic expansions[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2764-2772(in Chinese).
[15] 杨勇, 张辉, 郑宏涛. 有翼高超声速再入飞行器气动设计难点问题[J]. 航空学报, 2015, 36(1):49-57. YANG Y, ZHANG H, ZHENG H T. Difficulties in aerodynamic design problems of the winged hypersonic reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):49-57(in Chinese).
[16] JORRIS T R. Common aero vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints[D]. Wright-Patterson Air Force Base:Air University, 2007:34-41, 89.
[17] GUO J, WU X Z, TANG S J. Autonomous gliding entry guidance with geographic constraints[J]. Chinese Journal of Aeronautics, 2015, 28(5):1343-1354.
[18] ZHAO J, ZHOU R. Particle swarm optimization applied to hypersonic reentry trajectories[J]. Chinese Journal of Aeronautics, 2015, 28(3):822-831.
[19] MALL K, GRANT M J. High mass Mars exploration using slender entry vehicles:AIAA-2016-0019[R]. Reston, VA:AIAA, 2016.
[20] CHEN X Q, HOU Z X, LIU J X, et al. Phugoid dynamic characteristic of hypersonic gliding vehicles[J]. Science China (Information Sciences), 2011, 54(3):542-550.
[21] 胡锦川, 陈万春. 高超声速飞行器平稳滑翔弹道设计方法[J]. 北京航空航天大学学报, 2015, 41(8):1464-1475. HU J C, CHEN W C. Steady glide trajectory planning method for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8):1464-1475(in Chinese).
[22] LANCHESTER F W. Aerodonetics[M]. London:Archibald Constable & Co.Ltd., 1908:18-82.
[23] ETKIN B. Dynamics of atmospheric flight[M]. New York:John Wiley & Sons, Inc., 1972:323, 329-332, 337-339.
[24] BAIRSTOW L. Applied aerodynamics[M]. London:Longmans, Green and Co., 1939:447-551.
[25] ASHKENAS I L, MCRUER D T. Approximate airframe transfer functions and application to single sensor control systems:WADC-TR-58-82[R]. Wright-Patterson Air Force Base:Wright Air Development Center, 1958.
[26] 徐瑞娟. 对飞机纵向沉浮模态解析法的探讨[J]. 空气动力学学报, 1995, 13(4):457-462. XU R J. An exploration on the analytical-solution for the longitudinal phugoid mode of aircraft[J]. Acta Aerodynamica Sinica, 1995, 13(4):457-462(in Chinese).
[27] SCHEUBEL F N. Der einfluss des dichtegradienten der atmosphere auf die langsbewegung des flugzeugs[J]. Luftfahrtforschung, 1942, 19(4):132-136. SCHEUBEL F N. The influence of the density gradient of the atmosphere on the slow motion of the airplane[J]. Aviation Research, 1942, 19(4):132-136(in German).
[28] NEUMARK S. Longitudinal stability, speed and height:an examination of dynamic longitudinal stability in level flight, including the effects of compressibility and changes in atmospheric phenomena with height[J]. Aircraft Engineering and Aerospace Technology, 1950, 22(11):323-334.
[29] ETKIN B. Longitudinal dynamics of a lifting vehicle in orbital flight[J]. Journal of the Aerospace Sciences, 1961, 28(28):779-788, 832.
[30] LAITONE E V, CHOU Y S. Phugoid oscillations at hypersonic speeds[J]. AIAA Journal,1965,3(4):732-735.
[31] VINH N X, DOBRZELECKI A J. Nonlinear longitudinal dynamics of an orbital lifting vehicle[J]. Celestial Mechanics, 1971, 3(4):427-460.
[32] BERRY D T. Longitudinal long-period dynamics of aerospace craft:AIAA-1988-4358[R]. Reston, VA:AIAA, 1988.
[33] MARKOPOULOS N, MEASE K D, VINH N X. Thrust law effects on the long-period modes of aerospace craft:AIAA-1989-3379[R]. Reston, VA:AIAA, 1989.
[34] FERREIRA L D O. Nonlinear dynamics and stability of hypersonic reentry vehicles[D]. Michigan:University of Michigan, 1995:9-82, 138-139.
[35] REGAN F J, ANANDAKRISHNAN S M. Dynamics of atmospheric reentry[M]. Reston, VA:AIAA, 1993:37-39, 56.
[36] BETTS J T. Practical methods for optimal control using nonlinear programming[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2001:133-134.
[37] SLOTINE J E, LI W P. 应用非线性控制[M]. 程代展, 译. 北京:机械工业出版社, 2006:28-38. SLOTINE J E, LI W P. Applied nonlinear control[M]. CHENG D Z, translated. Beijing:China Machine Press, 2006:28-38(in Chinese).
[38] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京:北京航空航天大学出版社, 2005:186-204, 299. FANG Z P, CHEN W C, ZHANG S G. Aircraft flight dynamics[M]. Beijing:Beihang University Press, 2005:186-204, 299(in Chinese).

文章导航

/