改性双基推进剂黏弹-黏塑性本构模型
收稿日期: 2016-06-07
修回日期: 2016-08-17
网络出版日期: 2017-05-12
基金资助
江苏省自然科学基金(BK20140772)
Viscoelastic-viscoplastic constitutive model for modified double base propellant
Received date: 2016-06-07
Revised date: 2016-08-17
Online published: 2017-05-12
Supported by
Natural Science Foundation of Jiangsu Province (BK20140772)
为了表征改性双基推进剂的力学行为,推导出改性双基推进剂黏弹-黏塑性本构模型。利用一系列蠕变-回复试验,将材料的总应变分离为黏弹性应变和黏塑性应变,使用最小二乘法获得了黏弹性参数,使用Nelder-Mead单纯形优化算法,结合后向Euler数值方法获得了黏塑性参数。通过不同应力水平和不同加载时间的蠕变-回复试验对模型进行了验证,结果表明,在应力水平较低或加载时间较短的情况下,模型预测与试验值变化趋势基本一致,模型获得的黏弹性应变与黏塑性应变在总应变中所占的比例与试验吻合。改性双基推进剂黏弹-黏塑性本构模型能够在一定范围内描述材料的力学性能。
王鸿丽 , 许进升 , 陈雄 , 周长省 . 改性双基推进剂黏弹-黏塑性本构模型[J]. 航空学报, 2017 , 38(4) : 220505 -220505 . DOI: 10.7527/S1000-6893.2016.0238
In order to characterize mechanical properties of modified double base propellant, a viscoelastic-viscoplastic constitutive model for modified double base propellant is developed. A series of creep-recovery tests is done to separate the total strain of material into viscoelastic strain and viscoplastic strain. The least square method is used to get viscoelastic parameters, and Nelder-Mead simplex optimization algorithm is combined with backward Euler method to get viscoplastic parameters. Creep-recovery tests under different stress levels and different loading times are conducted to verify the model. The results show that with lower stress levels or shorter loading time, the variation trend of model prediction is consistent with that of the test value,and the percentage of viscoelastic strain and viscoplastic strain in total strain obtained from model agree with that by test. It is concluded that the mechanical properties of the modified double base propellant can be described to some extent by the viscoelastic-viscoplastic constitutive model.
[1] SUN C X, XU J S, CHEN X, et al. Strain rate and temperature dependence of the compressive behavior of composite modified double-base propellant[J]. Mechanics of Materials, 2015, 89:35-46.
[2] XU J S, CHEN X, WANG H L, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solid and Structures, 2014, 51(18):3209-3217.
[3] DENG K, YANG J H, HUANG W W, et al. A new method to obtain shear modulus of solid propellant[J]. Acta Astronautica, 2011, 69(7-8):440-444.
[4] 龚建良, 刘佩进, 李强. 基于能量守恒的HTPB推进剂非线性本构关系[J]. 含能材料, 2013, 21(3):325-329. GONG J L, LIU P J, LI Q. Nonlinear constitutive relation of HTPB propellant based on the first law of thermodynamics[J]. Chinese Journal of Energetic Materials, 2013, 21(3):325-329 (in Chinese).
[5] 孟红磊. 改性双基推进剂药柱结构完整性数值仿真方法研究[D]. 南京:南京理工大学, 2011:50-57. MENG H L. Research on numerical simulation method of structure integrity analysis for modified double base propellant grain[D]. Nanjing:Nanjing University of Science and Technology, 2011:50-57 (in Chinese).
[6] 常新龙, 赖建伟, 张晓军, 等. HTPB推进剂高应变率粘弹性本构模型研究[J]. 推进技术, 2014, 35(1):123-127. CHANG X L, LAI J W, ZHANG X J, et al. High strain-rate viscoelastic constitutive model for HTPB propellant[J]. Journal of Propulsion Technology, 2014, 35(1):123-127 (in Chinese).
[7] 邓凯, 阳建红, 陈飞, 等. HTPB复合固体推进剂本构方程[J]. 宇航学报, 2010, 31(7):1815-1818. DENG K, YANG J H, CHEN F, et al. On constitutive equation of HTPB composite solid propellant[J]. Journal of Astronautics, 2010, 31(7):1815-1818 (in Chinese).
[8] 张建彬. 双基推进剂屈服准则及粘弹塑性本构模型研究[D]. 南京:南京理工大学, 2013:88-98. ZHANG J B. Study on yield criteria and visco-elastoplastic constitutive model of the double-base propellant[D]. Nanjing:Nanjing University of Science and Technology, 2013:88-98 (in Chinese).
[9] DARABI M K, AL-RUB R K A, MASAD E A, et al. Thermodynamic-based model for coupling temperature-dependent viscoelastic, viscoplastic, and viscodamage of constitutive behavior of asphalt mixtures[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(7):817-854.
[10] DARABI M K, AL-RUB R K A, MASAD E A, et al. A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphalt materials[J]. International Journal of Solid and Structures, 2011, 48(1):191-207.
[11] KIM J S, MULIANA A H. A combined viscoelastic-viscoplastic behavior of particle reinforced composites[J]. International Journal of Solid and Structures, 2010, 47(5):580-594.
[12] 朱耀庭, 孙璐, 朱浩然, 等. 基于热力学理论的粘弹-粘塑性本构模型[J]. 力学季刊, 2010, 31(4):449-459. ZHU Y T, SUN L, ZHU H R, et al. A constitutive model of viscoelastic-viscoplastic solids based on thermo-dynamics theory[J]. Chinese Quarterly of Mechanics, 2010, 31(4):449-459 (in Chinese).
[13] 朱浩然, 孙璐, 朱耀庭. 基于热力学的沥青混合料粘弹-粘塑性损伤本构模型[J]. 中国公路学报, 2013, 26(3):57-64. ZHU H R, SUN L, ZHU Y T. Viscoelastic-viscoplastic damage constitutive model based on thermodynamics for asphalt mixtures[J]. Chinese Journal of Highway and Transport, 2013, 26(3):57-64 (in Chinese).
[14] LEMAITRE J, CHABOCHE J L. Mechanics of solid materials[M]. London:Cambridge University Press, 1990:198-204.
[15] AL-RUB R K A, VOYIADJIS G Z. Gradient-enhanced coupled plasticity-anisotropic damage model for concrete fracture:Computational aspects and applications[J]. International Journal of Damage Mechanics, 2009, 18(2):115-154.
[16] DESSOUKY S H. Multiscale approach for modeling hot mix asphalt[D]. College Station, TX:Texas A&M University, 2005:90-92.
[17] DARABI M K, AL-RUB R K A, MASAD E A, et al. A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures[J]. International Journal of Plasticity, 2012, 35(8):100-134.
[18] SUN L, ZHU Y T. A serial two-stage viscoelastic-viscoplastic constitutive model with thermodynamical consistency for characterizing time-dependent deformation behavior of asphalt concrete mixtures[J]. Construction and Building Materials, 2013, 40(7):584-595.
[19] MASAD E, DESSOUKY S, LITTLE D. Development of an elastoviscoplastic microstructural-based continuum model to predict permanent deformation in hot mix asphalt[J]. International Journal of Geomechanics, 2007, 7(2):119-130.
[20] AL-RUB R K A, MASAD E A, HUANG C W. Improving the sustainability of asphalt pavements through developing a predictive model with fundamental material properties:SWUTC/09/476660-00007-1[R]. Springfield, VA:National Technical Information Service, 2009.
/
〈 | 〉 |