流体力学与飞行力学

考虑吸气分布影响的HLFC机翼优化设计

  • 杨体浩 ,
  • 白俊强 ,
  • 史亚云 ,
  • 杨一雄 ,
  • 卢磊
展开
  • 西北工业大学 航空学院, 西安 710072

收稿日期: 2017-01-23

  修回日期: 2017-05-03

  网络出版日期: 2017-05-03

基金资助

国家"973"计划(2014CB744804)

Optimization design for HLFC wings considering influence of suction distribution

  • YANG Tihao ,
  • BAI Junqiang ,
  • SHI Yayun ,
  • YANG Yixiong ,
  • LU Lei
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-01-23

  Revised date: 2017-05-03

  Online published: 2017-05-03

Supported by

National Basic Research Program of China (2014CB744804)

摘要

针对混合层流流动控制(HLFC)机翼气动优化设计问题,采取将自由变形(FFD)参数化方法、基于紧支函数的径向基函数(RBF)动网格技术和改进的微分进化算法直接与CFD数值评估方法进行耦合的方式,建立了可同时考虑吸气控制分布和机翼型面影响的HLFC机翼气动优化设计系统。其中转捩预测方法为eN。针对无限展长后掠翼,利用该系统进行了单点、考虑升力系数变化的多点以及同时考虑了升力系数和马赫数变化的多点鲁棒优化设计研究。设计结果表明:HLFC机翼的有利压力分布形态为头部峰值较低,峰值之后为一定的逆压力梯度,之后为大小适宜的顺压力梯度。相比于初始构型,单点优化设计结果凭借有利压力分布形态将转捩点从弦长的2%推迟到了弦长的57%,但是吸气控制强度却只有初始构型的一半左右。多点设计结果表明:提高吸气控制强度尤其是吸气区域首尾2部分的吸气强度,有利于提高HLFC机翼的鲁棒性。当马赫数在0.77~0.79的范围内变化,升力系数在0.53~0.65的范围内变化时,多点设计结果都能维持37%弦长以上的层流区。

本文引用格式

杨体浩 , 白俊强 , 史亚云 , 杨一雄 , 卢磊 . 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017 , 38(12) : 121158 -121158 . DOI: 10.7527/S1000-6893.2017.121158

Abstract

Regarding the issue about Hybrid Laminar Flow Control (HLFC) wings aerodynamic design, we establish an aerodynamic optimization design system by directly coupling the CFD method with the optimization technologies including the Free Form Deformation (FFD) parameterization, the Radial Basis Function (RBF) dynamic mesh method based on compact support radial basis function, and the improved differential evolution. The transition prediction model is eN method. For the infinite span swept wing, the system proposed is used to do single-point design, and multi-point robust designs which consider the variation of lift coefficients and Mach numbers. Optimization results show that the best pressure distribution of HLFC wings has a low negative pressure peak at the leading edge, followed by a gently adverse pressure gradient. Then, just behind the adverse pressure gradient, there exists a suitable favorable pressure gradient. Compared with the original model, the transition location of the single-point design result, which has a good pressure distribution, is delayed from 2% of the chord to the chord length of 57%, but the suction control strength is only half of that of the original model. Multi-point design results indicate that increasing the strength of suction control, especially at the beginning and end of the suction control region, is conducive to improving the robustness of HLFC wings. When the Mach number is in the range of 0.77-0.79 and the lift coefficient is in the range of 0.53-0.65, the multi-point design results can maintain laminar flow region over the chord length of 37%.

参考文献

[1] SCHRAUF G. Status and perspectives of laminar flow[J]. Aeronautical Journal, 2005, 109(1102):639-644.[2] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).[3] REED H L, SARIC W S. Transition mechanisms for transport aircraft:AIAA-2008-3743[R]. Reston,VA:AIAA, 2008.[4] FUJINO M. Design and development of the HondaJet[J]. Journal of Aircraft, 2005, 42(3):755-764.[5] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).[6] WASSERMANN P, KLOKER M. Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer[J]. Journal of Fluid Mechanics, 2002, 456:49-84.[7] SAEED T I, GRAHAM W R, HALL C A. Boundary-layer suction system design for laminar-flying-wing aircraft[J]. Journal of Aircraft, 2011, 48(4):1368-1379.[8] RISSE K, SCHUELTKE F, STUMPF E, et al. Conceptual wing design methodology for aircraft with hybrid laminar flow control:AIAA-2014-0023[R]. Reston,VA:AIAA, 2014.[9] 黄江涛, 高正红, 白俊强, 等. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J]. 航空学报, 2012, 33(10):1817-1826. HUANG J T, GAO Z H, BAI J Q, et al. Laminar airfoil aerodynamic optimization design based on Delaunay graph mapping and FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1817-1826(in Chinese).[10] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164.[11] SHI Y Y, BAI J Q, HUA J, et al. Numerical analysis and optimization of boundary layer suction on airfoils[J]. Chinese Journal of Aeronautics, 2015, 28(2):357-367.[12] 耿子海, 刘双科, 王勋年, 等. 二维翼型混合层流控制减阻技术试验研究[J]. 实验流体力学, 2010, 24(1):16-50. GENG Z H, LIU S K, WANG X N, et al. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):16-50(in Chinese).[13] 朱心雄. 自由曲线曲面造型技术[M].北京:科学出版社, 2008:236-238. ZHU X X. Free-surface modeling techniques[M]. Beijing:Science Press, 2008:236-238(in Chinese).[14] 林言中, 陈兵, 徐旭. 径向基函数插值方法在动网格技术中的应用[J]. 计算物理, 2012, 29(2):191-197. LIN Y Z, CHEN B, XU X. Radial basis function interpolation method in dynamic grid application[J]. Chinese Journal of Computational Physics, 2012, 29(2):191-197(in Chinese).[15] DRAKE A, SOLOMON W D. Flight testing of a 30-degree sweep laminar flow wing for a high-altitude long-endurance aircraft:AIAA-2010-4571[R]. Reston,VA:AIAA, 2010.[16] MACK L M. Boundary-layer linear stability theory[R]. Brussels:AGARD, 1984.[17] KLTZSCHE M, PEARCE W, MCNAY D, et al. Laminar flow control leading edge glove/flight test article development:NASA-CR-172137[R]. Washington,D.C.:NASA, 1984.[18] DAGENHART J R,SARIC W S.Crossflow stability and transition experiments in swept-wing flow:NASA-1999-209344[R]. Washington, D.C.:NASA,1999.[19] LANGTRY R B,MENTER F R.Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J].AIAA Journal,2009,47(12):2894-2906.[20] 白俊强, 刘南, 邱亚松, 等. 基于RBF动网格方法和改进粒子群优化算法的多段翼型优化[J]. 航空学报, 2013, 34(12):2701-2715. BAI J Q, LIU N, QIU Y S, et al. Optimization of multi-foil based on RBF mesh deformation method and modified particle swarm optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2701-2715(in Chinese).[21] 赵光权. 基于贪婪策略的微分进化算法及其应用研究[D].哈尔滨:哈尔滨工业大学, 2007. ZHAO G Q. Differential evolution algorithm based on greedy strategy and its application[D]. Harbin:Harbin Institute of Technology, 2007(in Chinese).[22] 苏海军, 杨煜普, 王宇嘉. 微分进化算法的研究综述[J].系统工程与电子技术, 2008, 30(9):1793-1797. SUN H J, YANG Y P, WANG Y J. Research on differential evolution algorithm:A survey[J]. Systems Engineering and Electronics, 2008, 30(9):1793-1797(in Chinese).[23] 杨体浩, 白俊强, 王丹, 等. 考虑发动机干扰的尾吊布局后体气动优化设计[J].航空学报,2014,35(7):1836-1844. YANG T H, BAI J Q, WANG D, et al. Aerodynamic optimization design for after-body of tail-mounted engine layout considering interference of engines[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1836-1844(in Chinese).
文章导航

/