收稿日期: 2017-01-22
修回日期: 2017-05-03
网络出版日期: 2017-05-03
Efficient transonic static aeroelastic analysis method based on high accuracy modal aerodynamics
Received date: 2017-01-22
Revised date: 2017-05-03
Online published: 2017-05-03
跨声速静弹分析一直是工程设计中的难点问题,以模态坐标系下的线性静弹方程为基础,提出了基于高精度模态气动力的跨声速静弹高效分析方法,该方法仍需求解线性静弹方程,但对于其中关键的模态变形引起的弹性气动力增量,采用由结构变形到气动力的单向计算流体动力学(Computational Fluid Dynamics,CFD)/计算结构动力学(Computational Structural Dynamics,CSD)耦合方法获得,实现了高效线性方法与高精度CFD/CSD耦合方法的有效融合。以某小展弦比机翼基本状态、舵偏状态以及某型战斗机跨声速副翼效率的静弹分析为例,对比分析了本文方法、经典线性方法、CFD/CSD耦合方法的计算结果以及某型机的试飞辨识结果。分析结果表明,所提出的方法在计算效率、精度和鲁棒性方面具备综合优势,具有较高的工程应用价值。
何飞 , 洪冠新 , 刘海 , 但聃 , 王明 . 基于高精度模态气动力的跨声速静弹高效分析方法[J]. 航空学报, 2017 , 38(11) : 121157 -121157 . DOI: 10.7527/S1000-6893.2017.121157
Transonic static aeroelastic analysis has always been a difficult problem in engineering design. In this paper, based on the linear static aeroelastic equation in the modal coordinate system, a new efficient transonic static aeroelastic analysis method based on high precision modal aerodynamics is developed. The method still solves the linear equation,but for the key aerodynamic increments caused by the modal deformation, which can be obtained by the one-way CFD(Computational Fluid Dynamics)/CSD(Computational Structural Dynamics) interaction. With the method, effective fusion of high efficiency linear method and high accuracy CFD/CSD interaction method is realized. To validate the effects of the method, static aeroelastic problems of a small aspect ratio wing with/without control surface and the aileron efficiency of a fighter aircraft are analyzed, and the results of the classical linear method, CFD/CSD interaction method and test flight identification are compared, which show that the method developed has a comprehensive advantage in terms of efficiency, accuracy and robustness, and has high engineering application value.
[1] PRANANTA B B, MEIJER J J. Transonic static aeroelastic simulations of fighter aircraft:NLR-TP-2003-187[R]. Amsterdam:NLR, 2003.
[2] 张书俊,王运涛,孟德虹. 大展弦比联接翼静气动弹性研究[J].空气动力学学报,2013,31(2):170-174. ZHANG S J,WANG Y T,MENG D H.Study on static aeroelasticity for high aspect ratio joinedwings[J]. Acta Aerodynamica Sinica, 2013,31(2):170-174(in Chinese).
[3] HEEG J, SPAIN C V, FLORANCE J R,et al. Experimental results from the active aeroelastic wing wind tunnel test program:AIAA-2005-2234[R].Reston, VA:AIAA, 2005.
[4] YANG C, ZHANG B C, WAN Z Q, et al. A method of static aeroelastic analysis based on the high-order panel method and modal method[J]. Science China Technological Sciences, 2011, 54(3):741-748.
[5] WAN Z Q, ZHANG B C, YANG C, et al. Static aeroelastic analysis of a high-aspect-ratio wing based on wind-tunnel experimental aerodynamic forces[J]. Science China Technological Sciences, 2011, 54(10):2716-2722.
[6] 万志强, 邓立东, 杨超, 等. 基于非线性试验气动力的飞机静气动弹性响应分析[J]. 航空学报, 2005, 26(4):439-445. WAN Z Q, DENG L D, YANG C, et al. Aircraft static aeroelastic response analysis based on nonlinear experimental aerodynamic data[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4):439-445(in Chinese).
[7] 邵珂, 万志强, 杨超. 基于试验气动力的弹性飞机舵面效率分析[J]. 航空学报, 2009, 30(9):1612-1617. SHAO K, WANG Z Q, YANG C. Control surfaces efficiency analysis of flexible aircraft based on experimental aerodynamic forces[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9):1612-1617(in Chinese).
[8] GIESING J P, KALMAN T P, RODDEN W P. Correction factory techniques for improving aerodynamic prediction methods:NASA-CR-144967[R]. Washington, D.C.:NASA, 1976.
[9] JADIC I, HARTLEY D, GIRI J. Improving the aerodynamic approximation in linear aeroelasticity:AIAA-2000-1450[R]. Reston, VA:AIAA, 2000.
[10] MORENO R, NARISETTI R, VON KNOBLAUCH F, et al. A modification to the enhanced correction factor technique to correlate with experimental data:AIAA-2015-1421[R]. Reston, VA:AIAA, 2015.
[11] ZONA Technology Inc. ZAERO theoretical manual V9.2[M]. Scottsdale, AZ:ZONA Technology Inc., 2008:15-25.
[12] XIE C C, YANG C. Surface splines generation and large deflection interpolation[J]. Journal of Aircraft, 2015, 44(3):1024-1026.
[13] FRANKE R. Scattered data interpolation:Tests of some methods[J]. Mathematics of Computation, 1982,38:181-200.
[14] ALLEN C B, RENDALL T C S. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions:AIAA-2007-3804[R]. Reston, VA:AIAA, 2007.
[15] 林言中, 陈兵, 徐旭. 基于径向基函数插值的气动弹性计算方法[J]. 北京航空航天大学学报, 2014, 40(7):953-958. LIN Y Z, CHEN B, XU X. Numerical method of aeroelasticity based on radial basis function interpolation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7):953-958(in Chinese).
[16] SHENG C H, ALLEN C B. Efficient mesh deformation using radial basis functions on meshes[J]. AIAA Journal, 2013, 51(3):707-720.
[17] RENDALL T C S, ALLEN C B. An efficient fluid-structure interpolation and mesh motion scheme for large aeroelastic simulations:AIAA-2008-6235[R]. Reston, VA:AIAA, 2008.
[18] 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报, 2011, 29(5):784-788. WANG G, LEI B Q, YE Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5):784-788(in Chinese).
[19] 谢亮, 徐敏, 张斌,等. 基于径向基函数的高效网格变形算法研究[J]. 振动与冲击, 2013, 32(10):141-145. XIE L, XU M, ZHANG B, et al. Space points reduction in grid deforming method based on radial basis functions[J]. Journal of Vibration and Shock, 2013, 32(10):141-145(in Chinese).
[20] 赵永辉. 气动弹性力学与控制[M]. 北京:科学出版社, 2007:45-60. ZHAO Y H. Aeroelasticity and control[M]. Beijing:Science Press, 2007:45-60(in Chinese).
[21] 何飞, 杨超, 但聃, 等. 跨声速副翼效率高精度静弹分析及试飞验证[J]. 北京航空航天大学学报, 2017, 43(3):457-463. HE F, YANG C, DAN D, et al. Transonic static aeroelastic analysis of fighter's aileron efficiecy and test flight verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3):457-463(in Chinese).
/
〈 | 〉 |