收稿日期: 2017-03-09
修回日期: 2017-04-19
网络出版日期: 2017-04-17
基金资助
国家自然科学基金(51606100);江苏省自然科学基金(BK20150782);中央高校基本科研业务费专项资金(30915118836)
Propagation property of flame and pressure wave in rotating detonation engine
Received date: 2017-03-09
Revised date: 2017-04-19
Online published: 2017-04-17
Supported by
National Natural Science Foundation of China (51606100);Natural Science Foundation of Jiangsu Province (BK20150782);the Fundamental Research Funds for Central Universities (30915118836)
为研究旋转爆震发动机(Rotating Detonation Engine,RDE)工作过程中火焰与压力波的传播特性,在采用非预混喷注方式的H2/Air发动机模型上进行实验,采用的测量装置包括离子探针、高频压力传感器和高速摄影。结合离子信号曲线、压力曲线和高速摄影图片,分析了从点火到形成稳定旋转爆震波的过程,从测量结果中观察到了燃烧波的对撞现象及火焰与压力波的发展过程;在RDE的稳定工作过程中,火焰与压力波耦合,通过分析离子信号曲线,发现离燃烧室入口较近的点受新鲜反应物喷注的影响较大,并解释了实验所得爆震波的速度亏损和压力峰值相比于理论C-J(Chapman-Jouguet)值偏低的现象;在RDE熄火过程中也观察到了压力波和火焰的耦合,但离子信号峰值、压力峰值及压力波瞬时传播速度持续下降,一段时间后,发动机熄火。这些研究结论对理解RDE中旋转爆震波的起始和传播机理具有一定的参考价值。
徐灿 , 马虎 , 李健 , 邓利 , 余陵 . 旋转爆震发动机火焰与压力波传播特性[J]. 航空学报, 2017 , 38(10) : 121226 -121226 . DOI: 10.7527/S1000-6893.2017.121226
Experiments are conducted on non-premixed H2/Air Rotating Detonation Engine (RDE) to study the propagation property of the flame and pressure wave in the working process of the RDE. Ion probes, high-frequency pressure transducers and high speed camera are used simultaneously to measure the flame and instantaneous static pressure signal. Based on the ion current curve, pressure curve and high speed photography, the process from ignition to the formation of stable rotating detonation wave is analyzed. The collision of combustion wave and the development process of flame and pressure wave are observed. It can be concluded that the flame is coupling with the pressure wave in the stable working stage of the RDE. The average propagation velocity and average pressure peak of the rotating detonation wave obtained in the experiment are much smaller than the theoretical C-J (Chapman-Jouguet) values, and explanation to this phenomenon is given based on the analysis of the characteristics of the ion current curve. The effects of fresh reactant injection on the point near the inlet of combustion chamber are more significant than the further ones. Additionally, the shut down process also characterizes the coupling of the flame and pressure wave, the ion current peak, pressure peak and instantaneous velocity of pressure wave continue to decline till extinction. These research conclusions may provide some reference to the understanding of the initiation and propagation mechanism of the rotating detonation wave of the RDE.
[1] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of fuel-air mixtures[J].Combustion Explosion & Shock Waves, 2006, 42(4):463-471.
[2] NAOUR B L, FALEMPIN F, MIQUEL F. Recent experiment results obtained on continuous detonation wave engine:AIAA-2011-2235[R]. Reston, VA:AIAA, 2011.
[3] LEVI M T, FREDERICK R S. Buildup and operation of a rotating detonation engine:AIAA-2011-0602[R]. Reston, VA:AIAA, 2011.
[4] RUSSO R M, KING P I, SCHAUER F R, et al. Characterization of pressure rise across a continuous detonation engine:AIAA-2011-6046[R]. Reston, VA:AIAA, 2011.
[5] SCHWER D A, KAILASANATH K. Effect of low pressure ratio on exhaust plumes of rotating detonation engines:AIAA-2014-3901[R]. Reston, VA:AIAA, 2014.
[6] BURR J, YU K H. Detonation reignition within a rotating detonation engine:AIAA-2016-1202[R]. Reston, VA:AIAA, 2016.
[7] STECHMANN D, HEISTER S D, SARDESHMUKH S. High-pressure rotating detonation engine testing and flameholding analysis with hydrogen and natural gas:AIAA-2017-1931[R]. Reston, VA:AIAA, 2017.
[8] RANKIN B A, RICHARDSON D R, CASWELL A W, et al. Chemiluminescence imaging of an optically accessible non-pre-mixed rotating detonation engine[J]. Combustion and Flame, 2017, 176:12-22.
[9] WANG Y H, WANG J P. Coexistence of detonation with deflagration in rotating detonation engines[J]. International Journal of Hydrogen Energy,2016,41:14302-14309.
[10] YANG C L, WU X S, MA H, et al. Experimental research on initiation characteristics of a rotating detonation engine[J]. Experimental Thermal and Fluid Science, 2016, 71:154-163.
[11] 徐雪阳, 武晓松, 卓长飞, 等. 非预混喷注对旋转爆震发动机影响的数值研究[J]. 航空学报, 2016, 37(4):1184-1195. XU X Y, WU X S, ZHUO C F, et al. Numerical simulation of injection schemes with separate supply of fuel and oxidizer effects on rotating detonation engine[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1184-1195(in Chinese).
[12] 王超, 刘卫东, 刘世杰,等. 吸气式连续旋转爆震与来流相互作用[J]. 航空学报, 2016, 37(5):1411-1418. WANG C, LIU W D, LIU S J, et al. Interaction of air-breathing continuous rotating detonation with inflow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1411-1418(in Chinese).
[13] LEE J H S. 爆震现象[M]. 林志勇, 吴海燕, 林伟, 译. 北京:国防工业出版社, 2013:62-64. LEE J H S. The detonation phenomenon[M]. LIN Z Y, WU H Y, LIN W, translated. Beijing:National Defence Industry Press, 2013:62-64(in Chinese).
[14] ZDENEK J S, ANTHENIEN R A. Ion based high-temperature pressure sensor:AIAA-2004-0470[R]. Reston, VA:AIAA, 2004.
[15] KOWALKOWSKI M, MATSUTOMI Y, HEISTER S. Flame sensing in pulsed combustion using ion probes, diodes and visual indications:AIAA-2009-4945[R]. Reston, VA:AIAA, 2009.
[16] FROLOV S M, AKSENOV V S, IVANOV V S, et al. Large-scale hydrogen-air continuous detonation combustor[J]. International Journal of Hydrogen Energy, 2015, 40:1616-1623.
[17] GEORGE A S, DRISCOLL R, ANAND V, et al. Development of a rotating detonation engine facility at the University of Cincinnatia:AIAA-2015-0635[R]. Reston, VA:AIAA, 2015.
[18] 潘慕绚, 黄金泉, 郭伟, 等. 脉冲爆震发动机高温压力测量方法[J]. 推进技术, 2009, 30(3):355-359. PAN M X, HUANG J Q, GUO W, et al. Pressure measurement method under high temperature for pulse detonation engine[J]. Journal of Propulsion Technology, 2009, 30(3):355-359(in Chinese).
[19] 张彭岗, 何小民, 李建中, 等. 爆震管内波与火焰相互作用机理实验[J]. 航空动力学报, 2007, 22(10):1617-1621. ZHANG P G, HE X M, LI J Z, et al. Experimental study on mechanism of shock-flame interactions in deronation tubes[J]. Journal of Aerospace Power, 2007, 22(10):1617-1621(in Chinese).
[20] 陈先锋, 孙金华, 姚礼殷, 等. Tulip火焰形成过程中的细微结构特性[J]. 燃烧科学与技术, 2008, 14(4):350-354. CHEN X F, SUN J H, YAO L Y, et al. Characteristics of fine structure during Tulip flame forming[J]. Journal of Combustion Science and Technology, 2008, 14(4):350-354(in Chinese).
/
〈 | 〉 |