电子电气工程与控制

考虑避障的航天器编队轨道容错控制律设计

  • 马广富 ,
  • 董宏洋 ,
  • 胡庆雷
展开
  • 1. 哈尔滨工业大学 航天学院, 哈尔滨 150001;
    2. 北京航空航天大学 自动化科学与电气工程学院, 北京 100083

收稿日期: 2017-01-13

  修回日期: 2017-04-17

  网络出版日期: 2017-04-17

基金资助

国家自然科学基金(61522301,61633003)

Fault-tolerant translational control for spacecraft formation flying with collision avoidance requirement

  • MA Guangfu ,
  • DONG Hongyang ,
  • HU Qinglei
Expand
  • 1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
    2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China

Received date: 2017-01-13

  Revised date: 2017-04-17

  Online published: 2017-04-17

Supported by

National Natural Science Foundation of China (61522301, 61633003)

摘要

为解决航天器编队飞行过程中的故障容错、障碍规避以及碰撞避免等重要的飞行安全问题,提出了一种新颖的自适应轨道控制方法。该方法将人工势函数制导与滑模控制技术相结合,利用一类特殊的人工势函数来描述障碍规避及碰撞避免等要求,并基于此为航天器编队设计了协同控制器,使得编队在实现目标追踪和构型保持的同时,能够避免相互碰撞并具备规避障碍物的能力。更为重要的是,控制器中自适应律的引入使得闭环系统对执行机构故障、外界干扰及参数不确定性具备良好的容错能力,显著增强了闭环系统的鲁棒性。最后,典型的仿真分析验证了所提控制方法的有效性。

本文引用格式

马广富 , 董宏洋 , 胡庆雷 . 考虑避障的航天器编队轨道容错控制律设计[J]. 航空学报, 2017 , 38(10) : 321129 -321129 . DOI: 10.7527/S1000-6893.2017.321129

Abstract

To solve the flying safety issues of spacecraft formation,including fault tolerance and obstacle/collision avoidance,a novel adaptive translational control method is proposed.Specifically,the proposed method combines the core ideas of artificial potential function guidance and sliding mode control method.A special artificial potential function is designed to encode the collision/obstacle avoidance requirement,and then a coordination controller is presented to enable the spacecraft formation to maintain the predetermined configuration while tracking a target,and to be able to avoid all possible collisions between members in formation or with respect to a non-cooperative obstacle.Furthermore,by introducing adaptive laws into the controller,the robustness of the closed-loop system is further improved in respect to external disturbances,parameter uncertainties and even severe actuator faults.Typical simulations are performed to illustrate the effectiveness of the proposed method.

参考文献

[1] KAPILA V, SPARKS A G, BUFFINGTON J M, et al. Spacecraft formation flying:Dynamics and control[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3):561-564.
[2] REN W, BEARD R. Decentralized scheme for spacecraft formation flying via the virtual structure approach[J].Journal of Guidance,Control, and Dynamics, 2004, 27(1):73-82.
[3] BREAD R W, LAWTON J, HOW J P. A coordination architecture for spacecraft formation control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(6):777-790.
[4] WANG P K C, HADAEGH F Y. Coordination and control of multiple microspacecraft moving in formation[J]. Journal of the Astronautical Scineces, 1996, 44(3):315-335.
[5] CANUTO E, COLANGELO L, LOTUFO M, et al. Satellite-to-satellite attitude control of a long-distance spacecraft formation for the next generation gravity mission[J]. European Journal of Control, 2015, 25(5):1-16.
[6] ZHOU N, XIA Y Q. Coordination control design for formation reconfiguration of multiple spacecraft[J]. IET Control Theory and Applications, 2015, 9(15):2222-2231.
[7] 郑重, 宋申民. 考虑避免碰撞的编队卫星自适应协同控制[J]. 航空学报, 2013, 34(8):1934-1943. ZHENG Z, SONG S M. Adaptive coordination control of satellites within formation considering collision avoidance[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1934-1943(in Chinese).
[8] HU Q L, DONG H Y, ZHANG Y M, et al. Tracking control of spacecraft formation flying with collision avoidance[J]. Aerospace Science and Technology, 2015, 42:353-364.
[9] ZHANG D, SONG S, PEI R. Safe guidance for autonomous rendezvous and docking with a noncooperative target[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2010.
[10] VARMA S, KUMAR K D. Fault tolerant satellite attitude control using solar radiation pressure based on nonlinear adaptive sliding mode[J]. Acta Astronautica, 2009, 66(3-4):486-500.
[11] RUITER A D. A fault tolerant magnetic spin stabilizing controller for JC2Sat-FF mission[J]. Acta Astronautica, 2011, 68(1-2):160-171.
[12] JIN J, KO S, RYOO C K. Fault tolerant control for satellites with four reaction wheels[J]. Control Engineering Practice, 2008, 16(10):1250-1258.
[13] CAI W, LIAO X, SONG D Y. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2012, 31(5):1456-1463.
[14] XIAO B, HU Q, ZHANG Y. Finite-time attitude tracking of spacecraft with fault-tolerant capability[J]. IEEE Transactions on Control Systems Technology, 2015, 23(4):1338-1350.
[15] DONG H Y, HU Q L, MA G F. Dual-quaternion based fault-tolerant control for spacecraft formation flying with finite-time convergence[J]. ISA Transactions, 2016, 61(99):87-94.
[16] SINGLA P, SUBBARAO K, JUNKINS J L. Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4):892-902.
[17] KRISTIANSEN R, NICKLASSON P J. Spacecraft formation flying:A review and new results on state feedback control[J]. Acta Astronautica, 2009, 65(11-12):1537-1552.
[18] MURUGESAN S, GOEL P S. Fault-tolerant spacecraft attitude control system[J]. Sadhana, 1987, 11(1-2):233-261.
[19] RIMON E, KODITSCHEK D E. Exact robot navigation using artificial potential functions[J]. IEEE Transactions on Robotics and Automation, 1992, 8(5):501-518.
[20] BADAWY A, MCINNES C R. Small spacecraft formation using potential function[J]. Acta Astronautica, 2009, 65(11-12):1783-1788.
[21] GAZI V, ORDONEZ R. Target tracking using artificial potentials and sliding mode control[J]. International Journal of Control, 2007, 80(10):1626-1635.
[22] ZHANG F. The schur complement and its applications[M]. New York:Springer, 2006:17-46.
[23] LIU X F, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):750-765.

文章导航

/