航空发动机内流与传热技术发展专栏

具有边缘倒圆凹陷涡发生器换热性能实验

  • 李文灿 ,
  • 饶宇 ,
  • 李博 ,
  • 秦江
展开
  • 1. 上海交通大学 机械与动力工程学院 叶轮机械所, 上海 200240;
    2. 哈尔滨工业大学 能源科学与工程学院, 哈尔滨 150001

收稿日期: 2016-11-28

  修回日期: 2017-02-28

  网络出版日期: 2017-04-17

基金资助

国家自然科学基金(51676119,51176111)

Experimental of turbulent flow heat transfer of dimple vortex generators with rounded edge

  • LI Wencan ,
  • RAO Yu ,
  • LI Bo ,
  • QIN Jiang
Expand
  • 1. Institute of Turbomachinery, School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
    2. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2016-11-28

  Revised date: 2017-02-28

  Online published: 2017-04-17

Supported by

National Natural Science Foundation of China (51676119,51176111)

摘要

使用瞬态液晶(TLC)热像传热测试技术,对具有边缘倒圆的凹陷涡发生器局部传热特征和流动阻力进行了实验研究。凹陷边缘倒圆方案有2种:凹陷前边缘倒圆和凹陷边缘全部倒圆。凹陷的投影直径与通道高度比为1.0,凹陷深度与直径比为0.2,实验雷诺数范围为10 000~60 000。实验结果表明,在选取的雷诺数下,相比于光滑通道,边缘无倒圆的常规球型凹陷涡发生器阵列表面对流换热性能提升了约62.0%,相应的摩擦因子也增大了约73.0%。与无倒圆的常规球型凹陷涡发生器相比,边缘全倒圆的凹陷涡发生器换热性能提升了约3.6%,摩擦因子降低了约4.6%;前边缘倒圆的凹陷涡发生器换热性能提升了约11.0%,摩擦因子提高了约5.2%。综合看来,边缘倒圆使得凹陷涡发生器内部表面传热更加均匀;前边缘倒圆的凹陷涡发生器综合换热性能最高,比边缘无倒圆的常规凹陷涡发生器高出约9.6%;而边缘全部倒圆的凹陷涡发生器的综合换热性能比常规凹陷涡发生器高出近4.4%。

本文引用格式

李文灿 , 饶宇 , 李博 , 秦江 . 具有边缘倒圆凹陷涡发生器换热性能实验[J]. 航空学报, 2017 , 38(9) : 520999 -520999 . DOI: 10.7527/S1000-6893.2017.620999

Abstract

An experimental study of the local heat transfer performance and flow friction characteristics in a channel with spherical dimples with rounded edge is conducted using a transient liquid crystal (TLC) thermography technique. Two different rounding schemes for the dimple edge are investigated:the front edge rounding, and the whole edge rounding. The ratio of the dimple print diameter to the duct height is 1.0, the ratio of the dimple depth to diameter is 0.2, and the Reynolds number ranges from 10 000 to 60 000. As is shown in the experiment, the Nussult number of the channel with conventional dimples is about 62.0% higher than that of the smooth channel, with the friction factor being about 73.0% higher than that of the latter. Compared with the conventional dimples, the Nussult number of the dimples with the whole edge rounded is about 3.6% higher, with the friction factor being about 4.6% lower; the Nussult number of the dimples with the front edge rounding is about 11.0% higher, with the friction factor being about 5.2% higher. It is still found that the existence of dimple edge rounding can improve the heat transfer uniformity on the surface of the dimples. The overall thermal performance of the dimples with the front edge rounding is the best, which is about 9.6% higher than that of the normal dimples; while the dimples with the whole edge rounding is about 4.4% higher than that of the normal dimples.

参考文献

[1] HAN J Q. 燃气轮机传热和冷却技术[M]. 程代京, 谢永慧, 译. 西安:西安交通大学出版社, 2006. HAN J Q. Gas turbine heat transfer and cooling technology[M]. CHENG D J,XIE Y H, translated. Xi'an:Xi'an Jiaotong University Press, 2006(in Chinese).
[2] 杨通海, 朱惠人, 张丽. 窄通道内冲击冷却局部换热特性的瞬态液晶测量[J]. 航空学报, 2009, 30(11):2031-2036. YANG T H, ZHU H R, ZHANG L.Local heat transfer measurements in narrow impingement channel by transient liquid crystal technique[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2031-2036(in Chinese).
[3] 游良平, 陶毓伽, 蔡军. 涡轮叶片前缘复合冷却实验[J]. 航空学报, 2009, 30(9):1618-1623. YOU L P, TAO Y J, CAI J. Experiment of composite cooling on leading edge of turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9):1618-1623(in Chinese).
[4] 刘高文, 张丽, 郭涛. 凹坑强化传热的研究进展回顾[J]. 航空动力学报, 2007, 22(11):1785-1791. LIU G W, ZHANG L, GUO T. A review of heat transfer enhancement with dimpled surface[J]. Journal of Aerospace Power, 2007, 22(11):1785-1791(in Chinese).
[5] AFANASVEV V N, CHUDNOVSKY Y P, LEONTIEV A I, et al. Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate[J]. Experimental Thermal and Fluid Science, 1993, 7(1):1-8.
[6] SCHUKIN A V, KOZLOV A P, AGACHEV R S. Study and application of hemispherical cavities for surface heat transfer augmentation:95-GT-059[R]. New York:ASME, 1995.
[7] RAO Y, LI B, FENG Y. Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples[J]. Experimental Thermal and Fluid Science, 2014, 61(2):201-209.
[8] MAHMOOD G I, HILL M L, NELSON D L, et al. Local heat transfer and flow structure on and above a dimpled surface in a channel[J]. Journal of Turbomachinery, 2001, 123(1):115-123.
[9] MOON H K, O'CONNELL T, GLEZER B. Channel height effect on heat transfer and friction in a dimpled passage[J]. Gas Turbines Power, 2000, 122(2):307-313.
[10] 赵鹏, 刘高文, 朱晓华, 等. 间距对凹坑强化传热和流动阻力的影响[J]. 航空动力学报, 2009, 24(10):2266-2271. ZHAO P, LIU G W, ZHU X H, et al. Influence of dimple space on heat transfer enhancement and pressure loss in a dimpled rectangular channel[J]. Journal of Aerospace Power, 2009, 24(10):2266-2271(in Chinese).
[11] BURGESS N K, OLIVEIRA M M, LIGRANI P M. Nusselt number behavior on deep dimpled surfaces within a channel[J]. Journal of Heat Transfer, 2003, 125(1):11-18.
[12] RAO Y, XU Y M, WAN C Y. An experimental and numerical study of flow and heat transfer in channels with pin fin-dimple and pin fin arrays[J]. Experimental Thermal and Fluid Science, 2012, 38(1):237-247.
[13] 杨世铭, 陶文铨. 传热学[M]. 北京:高等教育出版社, 2006. YANG S M, TAO W Q. Heat transfer[M]. Beijing:Higher Education Press, 2006(in Chinese).
[14] EKKAD S V, HAN J C. A transient liquid crystal thermography technique for gas turbine heat transfer measurements[J]. Measurement Science and Technology, 2000, 11(7):957.
[15] KAYS W M, CRAWFORD M E. Convective heat and mass transfer, third edition[M]. New York:McGraw Hill, 1993.
[16] GEE D L, WEBB R L. Forced convection heat transfer in helically rib-roughened tubes[J]. International Journal of Heat and Mass Transfer, 1980, 23(8):1127-1136.
[17] KLINE S J, MCCLINTOCK F A. Describing uncer-tainties in single-sample experiments[J]. Mechanical engineering, 1953, 75(1):3-8.
[18] KINGSLEY-ROWE J R, LOCK G D, MICHAEL O J. Transient heat transfer measurements using thermo-chromic liquid crystal:lateral-conduction error[J]. International Journal of Heat and Fluid Flow, 2005, 26(2):256-263.
[19] LIGRANI P M, HARRISON J L, MAHMOOD G I. Flow structure due to dimple depression on a channel surface[J]. Physics of Fluids, 2001, 13(11):3442-3451.
[20] MAHMOOD G I, HILL M L, NELSON D L, et al. Local heat transfer and flow structure on and above a dimpled surface in a channel[J]. Journal of Turbomachinery, 2001, 123(1):115-123.

文章导航

/