大涵道比风扇/增压级叶尖间隙影响研究
Influence of tip clearance on high-bypass-ratio fan/booster
Received date: 2016-11-18
Revised date: 2017-03-06
Online published: 2017-04-17
以某大涵道比风扇/增压级为例,分析风扇转子叶尖间隙对风扇/增压级性能的影响。通过风扇外涵计算及试验结果对比,表明在各转速流量、压比下吻合良好,其中高转速试验效率略高于计算结果,失速裕度基本相当;当转速降低时试验效率偏高更为明显,失速裕度略高于计算结果。分别分析1.0转速、0.85转速以及0.6转速风扇叶尖间隙对风扇/增压级性能的影响,结果表明当转速较高时,随着间隙的增加,激波-边界层干涉与间隙泄漏流掺混导致了大间隙状态二次流损失增加,外涵设计点压比、流量、效率均有所降低,当间隙增加到一定程度时,失速裕度迅速降低;对低转速状态的分析结果表明,随着间隙的增加,设计点效率下降幅度相比高转速状态有所降低,失速裕度随着间隙的增加而增大,风扇外涵特性对间隙的敏感性降低。在各转速下风扇转子叶尖间隙的大小对内涵性能影响不大。
陈云永 , 万科 , 杨小贺 , 丁建国 . 大涵道比风扇/增压级叶尖间隙影响研究[J]. 航空学报, 2017 , 38(9) : 520951 -520951 . DOI: 10.7527/S1000-6893.2017.620951
An analytical study of tip clearance flows in the high-bypass-ratio fan/booster is presented. The results reveal that for all kinds of corrected rotating speed, the flow and the total pressure ratio predicted by CFD is very close to the experiment result; for the high corrected rotating speed, the efficiency is lower in CFD and stall margin is almost equal to the experiment results; for the decreased corrected rotating speed, the efficiency of the experiment is obviously higher, and stall margin of the experiment is lower. Evaluations are conducted under 1.0, 0.85 and 0.6 corrected rotating speed conditions for multiple fan tip clearance levels to obtain clearance sensitivities. When the tip clearance increases, the shock wave-boundary interaction and tip leakage flow mixing lead to secondary flow loss at high corrected rotating speed, and the performance decreases at the design point. Stall margin will rapidly fall when the tip clearance rises to a certain level. Similar results are obtained at low corrected rotating speed while the decline of efficiency is slower and stall margin rises as tip clearance increases, revealing the reduction of tip sensitivity as the corrected rotating speed reduces. There is little influence of tip clearance on the core flow at all kinds of corrected rotating speed.
[1] CUMPSTY N A. Compressor aerodynamics[M]. Essex:Longman Scientific & Technical, 1989.
[2] 陈懋章. 叶轮机气动研究现状与发展趋势[C]//航空百年动力分论坛大会报告, 2003. CHEN M Z. Present status and future development of the studies for turbomachinery aerodynamics[C]//Forum of 100th Anniversary for Aeronautics-Jet Propulsion, 2003(in Chinese).
[3] 朱芳, 陈云永, 卫飞飞, 等. 某民用大涵道比涡扇发动机风扇缩尺试验件气动性能数值仿真[J]. 航空动力学报, 2013, 28(7):1539-1548. ZHU F, CHEN Y Y, WEI F F, et al. Numerical simulation of aerodynamic performance of scaled fan of a civil high-bypass-ration turbo engine[J]. Journal of Aerospace Power, 2013, 28(7):1539-1548(in Chinese).
[4] 万科, 朱芳, 金东海, 等. 周向平均方法在某风扇/增压级分析中的应用[J]. 航空学报, 2014, 35(1):132-140. WAN K, ZHU F, JIN D H, et al. Application of circumferentially averaged method in fan/booster[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):132-140(in Chinese).
[5] 邹正平, 李宇, 刘火星, 等. 民用大涵道比涡扇发动机叶轮机某型关键技术[J]. 航空动力学报, 2008, 23(8):1504-1518. ZOU Z P, LI Y, LIU H X, et al. Key turbomachinery technology of civil high-bypass-ratio turbofan engine[J]. Journal of Aerospace Power, 2008, 23(8):1504-1518(in Chinese).
[6] SMITH L H. Casing boundary layers in multi-stage compressors[C]//Proceedings of the Symposium on Flow Research on Blading, 1970.
[7] MOORE R D. Rotor tip clearance effects on overall and blade-element performance of axial-flow transonic fan stage:NASA TP 2049[R]. Cleveland:NASA Lewis Research Center, 1982.
[8] WISLER D C. Loss reduction in axial flow compressors through low-speed model testing[J]. Journal of Turbomachinery, 1985, 107(2):354-363.
[9] DENTON J D. Loss mechanism in turbomachines[J]. Journal of Turbomachinery, 1993, 115(4):621-656.
[10] SMITH G D J, CUMPSTY N A. Flow phenomena in compressor casing treatment[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(3):532-541.
[11] ADAMCZYK J J, CELESTINA M L, GREITZER E M. The role of tip clearance in high-speed fan stall:ASME 91-GT-83[R]. New York:ASME, 1991.
[12] WADIA A R, HAH C, RABE D. The impact of forward sweep on tip clearance flows in transonic compressor[C]//24th International Congress of the Aeronautical Sciences, 2004.
[13] 邓宝洋, 桂幸民, 袁巍, 等.高负荷跨音压气机转子的间隙效应[J]. 北京航空航天大学学报, 2002, 28(4):387-390. DENG B Y, GUI X M, YUAN W, et al. Experimental investigation on high-loading transonic compressor rotor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(4):387-390(in Chinese).
[14] 桂幸民, 聂超群, 王同庆, 等. 跨音压气机转子叶尖间隙复杂流动观测[J]. 工程热物理学报, 2000, 21(5):570-572. GUI X M, NIE C C, WANG T Q, et al. Tip clearance flow in a transonic compressor rotor[J]. Journal of Engineering Thermophysics, 2000, 21(5):570-572(in Chinese).
[15] SAHA N, MA R, DEVENPORT W J. Characterizing unsteady periodic disturbances in the tip leakage vortex of an idealized axial compressor rotor blade:AIAA-2011-0386[R]. Reston, VA:AIAA, 2011.
[16] CHOI M, BAEK J H. Role of the hub-corner-separation on the rotating stall:AIAA-2006-4462[R]. Reston, VA:AIAA, 2006.
[17] 刘波, 南向谊, 陈云永. 附面层抽吸对转子激波结构和分离流动的影响[J]. 航空学报, 2008, 29(2):315-320. LIU B, NAN X Y, CHEN Y Y. Effects of BLS on the shockwave structure and separation flow of fan rotor[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2):315-320(in Chinese).
[18] ZANTE D V, STRAZISAR A J, WOOD J R, et al. Recommendations for achieving accurate numerical simulation of tip clearance flows in transonic compressor rotors[J]. Journal of Turbomachinery, 2000, 122(4):733-742.
[19] FROST G R, WENNERSTROM A J. The design of axial com-pressor airfoils using arbitrary camber lines:ARL-73-0107(AD 765165)[R]. Dayton, OH:Aerospace Research Laboratories, Wright-Patterson Air Force Base, 1973.
[20] 冀国锋, 桂幸民. 轴流/离心压气机通用任意中弧造型设计方法研究[J]. 航空动力学报, 2009, 24(1):150-156. JI G F, GUI X M. A blading design method for axial/centrifugal compressor airfoils using arbitrary camber lines[J]. Journal of Aerospace Power, 2009, 24(1):150-156(in Chinese).
/
〈 | 〉 |