收稿日期: 2017-03-03
修回日期: 2017-04-15
网络出版日期: 2017-04-14
Low speed wind tunnel free-flight test of powered sub-scale aircraft
Received date: 2017-03-03
Revised date: 2017-04-15
Online published: 2017-04-14
为在风洞中模拟飞行器六自由度飞行的物理过程,获取飞行器流动/运动/控制耦合特性,对低速风洞带动力模型自由飞试验技术进行了研究。基于相似准则,在大型低速风洞建立了试验系统,利用纵向静不稳定的动力学相似缩比模型飞机,经过飞行控制律闭环控制增稳后,开展稳态飞行、施加标准激励验证飞行、控制律参数调整验证飞行、大迎角飞行等自由飞试验,并将试验结果与原型机飞行仿真结果进行了对比研究。结果表明,基于相似准则建立的低速风洞带动力模型自由飞试验系统,能够有效模拟飞机闭环控制飞行过程,试验结果准确反映原型机的稳定与控制特性。低速风洞带动力模型自由飞试验验证了原型机的飞行控制律,预测了其大迎角失速/偏离特性,形成了飞行器气动/飞行力学/控制一体化风洞试验研究能力。
岑飞 , 聂博文 , 刘志涛 , 孙海生 , 李清 . 低速风洞带动力模型自由飞试验[J]. 航空学报, 2017 , 38(10) : 121214 -121214 . DOI: 10.7527/S1000-6893.2017.121214
To simulate the physical progress of the aircraft flying at six-degree-of-freedom in the wind tunnel and achieve the aerodynamics,kinematics and flight-control coupling characteristics of the aircraft,the low speed wind tunnel free-flight test technique for powered sub-scale aircraft is studied.Based on the similarity criterion,a test platform is established in a large-scale low speed wind tunnel.A dynamic sub-scale model which is unstable in longitudinal static stability is augmented according to flight control laws,and flies in the wind tunnel test section with 1g trim condition,doublet control inputs,adjusted control feed-back gains and high angle of attack.The correlation between the free-flight test results of the sub-scale model and the simulation results of the full-scale prototype aircraft is analyzed.The results show that the wind tunnel free-flight test platform developed based on the similarity criterion can effectively simulate the actual flight process of the aircraft augmented with flight control laws,and the stability and control characteristics of the sub-scale model representing the prototype aircraft,and is thus especially useful for verification of flight control laws and prediction of stall/departure characteristics.The established test platform has the capability of conducting integrated research on the coupling between aerodynamics,flight dynamics and flight control characteristics.
Key words: wind tunnel; flight test; flying quality; dynamic stability; flight control
[1] 朱自强, 王晓璐, 吴宗成, 等. 民机设计中的多学科优化和数值模拟[J]. 航空学报, 2007, 28(1):1-13. ZHU Z Q, WANG X L, WU Z C, et al. Multi-disciplinary optimization and numerical simulation in civil aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):1-13(in Chinese).
[2] 陈宗基, 张汝麟, 张平, 等. 飞行器控制面临的机遇与挑战[J]. 自动化学报, 2013, 39(6):703-710. CHEN Z J, ZHANG R L, ZHANG P, et al. Flight control:Challenges and opportunities[J]. Acta Automatica Sinica, 2013, 39(6):703-710(in Chinese).
[3] 何开锋, 刘刚, 张利辉, 等. 航空器带动力自主控制模型飞行试验技术研究进展[J]. 实验流体力学, 2016, 30(2):1-7. HE K F, LIU G, ZHANG L H, et al. Research progress on model flight test of powered aircraft with autonomous control system[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):1-7(in Chinese).
[4] 周自全, 赵永杰. 空中飞行模拟与电传飞机飞行试验[J]. 飞行力学, 2005, 23(1):19-26. ZHOU Z Q, ZHAO Y J. In-flight simulation and FBW aircraft flight tests[J]. Flight Dynamics, 2005, 23(1):19-26(in Chinese).
[5] CAMPBELL J R. Free and semi-free model flight-testing techniques used in low-speed studies of dynamic stability and control:NASA-TM-450785[R]. Washington, D.C.:NASA, 1963.
[6] BRUCE D O, BRANDON J M, CROOM M A, et al. Overview of dynamic test techniques for flight dynamics research at NASA LaRC (Invited)[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston, VA:AIAA, 2006:655-688.
[7] BOISSEAU P C. Flight investigation of dynamic stability and control characteristics of a 1/10-scale model of a variable-wing-sweep fighter airplane configuration:NASA TM X-1367[R]. Washington, D.C.:NASA, 1967.
[8] NEWSOM W A, GRAFTON S B. Free-flight investigation of a 1/17-scale model of the B-1 airplane at high angles of attack:NASA-TM-SX-2744[R]. Washington, D.C.:NASA, 1973.
[9] GRAFTON S B, CHAMBERS J R. Wind tunnel free-flight investigation of a model of a spin-resistant fighter configuration:NASA-TN D-7716[R]. Washington, D.C.:NASA, 1974.
[10] MULLIN S N. The evolution of the F-22 advanced tactical fighter:AIAA-1992-4188[R]. Reston, VA:AIAA, 1992.
[11] CHAMBERS J R, BURLEY J R. High-angle-of-attack technology-accomplishments, lessons learned, and future directions:NASA/CP-1998-207676[R]. Washington,D.C.:NASA, 1998.
[12] JACKSON E B, BUTTRILL C W.Control laws for a wind tunnel free-flight study of a blended-wing-body Aircraft:NASA-TM-2006-214501[R]. Washington, D.C.:NASA, 2006.
[13] 孙海生, 岑飞, 聂博文, 等. 水平风洞模型自由飞试验技术研究现状及展望[J]. 实验流体力学, 2011, 25(4):103-108. SUN H S, CEN F, NIE B W, et al. Present research status and prospective application of wind tunnel free-flight test technique[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):103-108(in Chinese).
[14] 岑飞. 水平风洞模型自由飞中的飞行控制系统关键技术研究[D]. 绵阳:中国空气动力研究与发展中心, 2011:11-16. CEN F. Design of flight control system for wind tunnel free-flight test[D]. Mianyang:China Aerodynamics Research and Development Center, 2011:11-16(in Chinese).
[15] 耿玺, 史志伟. 面向过失速机动的风洞动态试验相似准则探讨[J]. 实验流体力学, 2011, 25(3):41-45. GENG X, SHI Z W. Similarity criterion of the wind tunnel test for the post-stall maneuver[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):41-45(in Chinese).
[16] 王勋年. 低速风洞试验[M]. 北京:国防工业出版社, 2002:23-25. WANG X N. Low speed wind tunnel test[M]. Beijing:National Defence Industry Press, 2002:23-25(in Chinese).
[17] CHAMBERS J R. Modeling flight:The role of dynamically-scaled free-flight models in support of NASA's aerospace programs[M]. Washington,D.C.:NASA, 2010:15-16.
[18] EDWARDS J W, DEETS D A. Development of a remote digital augmentation system and application to a remotely piloted research vehicle:NASA TN D-7941[R]. Washington, D.C.:NASA, 1975.
[19] 陈孟钢, 高金源. 缩比模型飞机及其飞控系统与原型机的相似关系[J]. 飞行力学, 2003, 21(2):34-37. CHEN M G, GAO J Y. Similarity relationships between scaled-model aircraft with its flight control system and prototype aircraft[J]. Flight Dynamics, 2003, 21(2):34-37(in Chinese).
[20] 郭林亮, 祝明洪, 孔鹏, 等. 风洞虚拟飞行模型机与原型机动力学特性分析[J]. 航空学报, 2016, 37(8):2583-2593. GUO L L, ZHU M H, KONG P, et al. Analysis of dynamic characteristics between prototype aircraft and scaled-model of virtual flight test in wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2583-2593(in Chinese).
[21] CEN F, LI Q, FAN L T, et al. Development of a pilot-in-loop real-time simulation platform for wind tunnel free-flight test[C]//Proceeding of 2015 IEEE International Conference on Information and Automation. Piscataway, NJ:IEEE Press, 2015:2433-2438.
/
〈 | 〉 |