固体力学与飞行器总体设计

考虑横法向热应变的Reddy型功能梯度梁理论

  • 许琦 ,
  • 吴振
展开
  • 沈阳航空航天大学 辽宁省飞行器复合材料结构分析与仿真重点实验室, 沈阳 110136

收稿日期: 2016-11-07

  修回日期: 2017-02-16

  网络出版日期: 2017-04-10

基金资助

国家自然科学基金(11272217,11402152)

A Reddy-type theory of functionally graded beam considering transverse normal thermal strain

  • XU Qi ,
  • WU Zhen
Expand
  • Liaoning Province Key Laboratory on Composite Structural Analysis and Simulation of Aerocraft, Shenyang Aerospace University, Shenyang 110136, China

Received date: 2016-11-07

  Revised date: 2017-02-16

  Online published: 2017-04-10

Supported by

National Natural Science Foundation of China (11272217,11402152)

摘要

Reddy型高阶理论已被广泛用于功能梯度材料(FGM)结构分析,然而此理论忽略了横法向应变,难于准确分析功能梯度梁的热力行为。为提高Reddy理论分析热力响应的精度,提出了一种考虑横法向热应变的三参数Reddy型高阶功能梯度梁理论。此模型考虑了横法向热应变,但不增加额外位移变量。应用构建的模型分析了功能梯度梁的热力响应,并研究了不同体积分数对面内应力和位移的影响。数值结果表明,所提出的模型能准确分析功能梯度梁的热力响应,而忽略横法向应变的模型计算结果精度较低。

本文引用格式

许琦 , 吴振 . 考虑横法向热应变的Reddy型功能梯度梁理论[J]. 航空学报, 2017 , 38(8) : 220918 -220918 . DOI: 10.7527/S1000-6893.2017.220918

Abstract

The Reddy-type higher-order theory has been widely used for analysis of Functionally Graded Material (FGM) structures. However, the theory neglects transverse normal strain, and will thus encounter difficulties in analysis of the thermomechanical behaviors of the functionally graded beam. To improve the performance of Reddy's theory, a Reddy-type higher-order theory considering transverse normal thermal strain with three displacement parameters is proposed. Although transverse normal thermal strain is taken into account, the number of displacement parameters is not increased in the theory. The model proposed is used to investigate thermomechanical response of the functionally graded beam, and also the effect of volume fraction on stress and displacement of functionally graded beam. Numerical results showed that the proposed model can calculate accurately the thermomechanical response of the functionally graded beam, and can improve the calculation accuracy of the models for transverse normal thermal strain.

参考文献

[1] HOUARI M S A, TOUNSI A, BÉG O A. Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory[J]. International Journal of Mechanical Sciences, 2013, 76:102-111.
[2] PRAVEEN G N, REDDY J N. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J]. International Journal of Solids and Structures, 1998, 35(33):4457-4476.
[3] WU L H. Thermal buckling of a simply supported moderately thick rectangular FGM plate[J]. Composite Structures, 2004, 64(2):211-218.
[4] MENDONCA P D T R, DE BARCELLOS C S D, TORRES D A F. Robust Ck/C0 generalized FEM approximations for higher-order conformity requirements:Application to Reddy's HSDT model for anisotropic laminated plates[J]. Composite Structures, 2013, 96:332-345.
[5] JONNALAGADDA K D, TAUCHERT T R, BLANDFORD G E. High-order thermoelastic composite plate theories-An analytic comparison[J]. Journal of Thermal Stresses, 1993, 16(3):265-284.
[6] ROHWER K, ROLFES R, SPARR H. Higher-order theories for thermal stresses in layered plates[J]. International Journal of Solids and Structures, 2001, 38(21):3673-3687.
[7] RADU A G, CHAYTTOPADHYAY A. Dynamic stability analysis of composite plates including delaminations using a higher order theory and transformation matrix approach[J]. International Journal of Solids and Structures, 2002, 39(7):1949-1965.
[8] TOURATIER M. An efficient standard plate theory[J]. International Journal of Engineering Science, 1991, 29(8):901-916.
[9] ZENKOUR A M, ALGHAMDI N A. Thermoelastic bending analysis of functionally graded sandwich plates[J]. Journal of Materials Science, 2008, 43(8):2574-2589.
[10] MATSUNAGA H. Stress analysis of functionally graded plates subjected to thermal and mechanical loadings[J]. Composite Structures, 2009, 87(4):344-357.
[11] REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4):745-752.
[12] REDDY J N. Analysis of functionally graded plates[J]. International Journal for Numerical Methods in Engineering, 2000, 47(1-3):663-684.
[13] REDDY J N. A refined nonlinear theory of plates with transverse shear deformation[J]. International Journal of Solids and Structures, 1984, 20(9-10):881-896.
[14] YANG J, SHEN H S. Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions[J]. Composites Part B:Engineering, 2003, 34(2):103-115.
[15] DUC N D, TUNG H V. Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates on elastic foundations[J]. Composite Structures, 2011, 93(11):2874-2881.
[16] SZEKRENYES A. Application of Reddy's third-order theory to delaminated orthotropic composite plates[J]. European Journal of Mechanics-A/Solids, 2014, 43:9-24.
[17] JIN G Y, YANG C M, LIU Z G. Vibration and damping analysis of sandwich viscoelastic-core beam using Reddy's higher-order theory[J]. Composite Structures, 2016, 140:390-409.
[18] CHEN W J, WU Z. A Selective review on recent development of displacement-based laminated plate theories[J]. Recent Patents on Mechanical Engineering, 2008, 100(1):29-44.
[19] WU Z, LO S H, SZE K Y. Influence of transverse normal strain and temperature profile on thermoelasticity of sandwiches in terms of the enhanced Reddy's theory[J]. Journal of Thermal Stresses, 2013, 36(1):19-36.
[20] KAPURIA S, DUMIR P C, AHMED A. An efficient higher order zigzag theory for composite and sandwich beams subjected to thermal loading[J]. International Journal of Solids and Structures, 2003, 40(24):6613-6631.
[21] MATSUNAGA H. Interlaminar stress analysis of laminated composite and sandwich circular arches subjected to thermal/mechanical loading[J]. Composite Structures, 2003, 60(3):345-358.

文章导航

/