直升机技术专栏

电动直升机概念设计与分析

  • 赵洪 ,
  • 李建波 ,
  • 刘铖
展开
  • 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 南京 210016

收稿日期: 2016-10-19

  修回日期: 2016-12-14

  网络出版日期: 2017-04-05

基金资助

江苏高校优势学科建设工程(PAPD)

Conceptual design and analysis of electric helicopters

  • ZHAO Hong ,
  • LI Jianbo ,
  • LIU Cheng
Expand
  • Science and Technology on Rotorcraft Aeromechanics Laboratory, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-10-19

  Revised date: 2016-12-14

  Online published: 2017-04-05

Supported by

Priority Academic Program Development of Jiangsu Higher of Education Institutions (PAPD)

摘要

根据当前电池与电动机特性分别建立适合电动直升机的能源与动力系统数学模型,提出满足电动直升机的3种能源方案,构建出一套适合电动直升机概念设计的总体参数选择与优化方法,并结合任务剖面需求对采用3种能源方案的电动直升机展开总体参数的选择与敏感性分析。受当前电池技术水平发展,电动直升机的久航性能与燃油动力直升机相比有较大差距。通过参数敏感性分析方法得出,电动直升机具有与燃油直升机不同的设计特征,电动直升机应结合动力及能源系统特征进行针对性设计。

本文引用格式

赵洪 , 李建波 , 刘铖 . 电动直升机概念设计与分析[J]. 航空学报, 2017 , 38(7) : 520866 -520866 . DOI: 10.7527/S1000-6893.2017.520866

Abstract

Based on the characteristics of present batteries and electric motors, the energy and power system models adaptable to electric helicopters are established respectively. Three energy programs applicable for electric helicopters are proposed, and a methodology involving primary parameters sizing and optimization for conceptual design of electric helicopters is developed. Considering mission profile requirements, parameters sizing and sensitivity analysis for the helicopter applying the three different energy proposals are performed. Due to limitation of current development of battery technology, there still exists a wide gap between endurance of electric and of fuel-consuming helicopters. Parameter sensitivity analysis shows that the design features of electric helicopters are different from those of fuel-consuming helicopters, so that the characteristics of the power and energy systems should be specifically considered in the design of electric helicopters.

参考文献

[1] ROSEN K M. A Prospective: The importance of propul sion technology to the development of helicopter systems with a vision for the future[J]. Journal of the American Helicopter Society, 2008, 53(4): 307-337.
[2] SCHNEIDER D. Helicopters go electric[J]. IEEE Spectrum, 2012, 49(1): 11-12.
[3] CHRETIEN P. The quest for the world's first electric manned helicopter flight[J]. Vertiflite, 2012, 58(2): 38-42.
[4] GUINEA D M, ROURA M, GARCIA-ALEGRA M C, et al. Specific weight: A challenge for a fuel-cell-powered electric helicopter[J]. Journal of Aircraft, 2007, 44(6): 2073-2076.
[5] 聂资, 陈铭. 电动直升机飞行性能计算和分析[J]. 北京航空航天大学学报, 2012, 38(9): 1139-1143. NIE Z, CHEN M. Calculation and analysis of electric-powered helicopter flight performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(9): 1139-1143 (in Chinese).
[6] JOHNSON W. Propulsion system models for rotorcraft conceptual design[C]//AHS 5th Decennial Aeromechanics Specialists’ Conference. Washington, D.C.: NASA, 2014.
[7] DATTA A, JOHSON W. Requirements for a hydrogen powered all-electric manned helicopter: AIAA-2012-5405[R]. Reston: AIAA, 2012.
[8] MARTIN H. Electric flight-potential and limitations[J]. Efficient Technologies and Concepts Operation, 2012, 203(5): 371-372.
[9] Electric propulsion components with high power densities for aviation[EB/OL]. [2016-10-18]. http://nari.arc.nasa.gov/sites/default/files/attachments/Korbinian-TVFW-Aug2015.pdf.
[10] Manual_for_emrax_motor_december_2014_new.pdf. [EB/OL]. [2016-10-18]. http://www.enstroj.si/download.php?f=imagEs/stories/manal_for_emrax_motor_december_2014_new.pdf.
[11] MCDONALD R A. Electric motor modeling for conceptual aircraft design: AIAA-2013-0941[R]. Reston: AIAA, 2013.
[12] US DRIVE. Fuel cell technical team roadmap[R]. U.S. DRIVE Partnership, 2013.
[13] YU W, XU S C, NI H S. Air compressors for fuel cell vehicles: An systematic review[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1): 112-115.
[14] 2016 Fuel cells section, multi-year research, development, and demonstration plan[EB/OL]. [2016-10-18] http://energy.gov/sites/prod/files/2016/06/f32/fcto_myrdd_fuel_cells_0.pdf.
[15] BRADLEY T, MOFFIT B, PAREKH D, et al. Energy management for fuel cell powered hybrid-electric aircraft: AIAA-2009-4590[R]. Reston: AIAA, 2009.
[16] 张呈林, 郭才根. 直升机总体设计[M]. 北京: 国防工业出版社, 2006: 49-57. ZHANG C L, GUO C G. Helicopter preliminary design[M]. Beijing: Defense Industry Press, 2006: 49-57 (in Chinese).
[17] 贾伟力, 陈仁良. 一种直升机总体概念设计方法[J]. 南京航空航天大学学报, 2011, 43(3): 289-295. JIA W L, CHEN R L. Conceptual design method for helicopter with main and tail rotors[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3): 289-295 (in Chinese).
[18] JOHNSON W. NDARC: NASA design and analysis of rotorcraft: NASATP 2009-215402[R]. Washington, D.C.: NASA, 2009.
[19] PROUTY R W. Helicopter performance, stability, and control[M]. Florida: Krieger Publishing Company, 2005: 273-332.
[20] 杨宇军, 陈建军, 马娟, 等. 基于区间因子法的可靠度与参数敏感度分析[J]. 机械强度, 2009, 31(2): 236-239. YANG Y J, CHEN J J, MA J, et al. Analysis of reliability and parametric sensitivity based on interval factor method[J]. Journal of Mechanical Strength, 2009, 31(2): 236-239 (in Chinese).

文章导航

/