电子电气工程与控制

基于高斯伪谱法的翼伞系统复杂多约束轨迹规划

  • 罗淑贞 ,
  • 孙青林 ,
  • 檀盼龙 ,
  • 陶金 ,
  • 贺应平 ,
  • 罗浩文
展开
  • 1. 南开大学 计算机与控制工程学院, 天津 300380;
    2. 中航工业宇航救生装备有限公司, 襄阳 441003;
    3. 河南科技大学 农业工程学院, 洛阳 471003

收稿日期: 2016-04-23

  修回日期: 2016-09-07

  网络出版日期: 2017-04-11

基金资助

国家自然科学基金(61273138,61573197);国家科技支撑计划(2015BAK06B04);天津市科技支撑计划(14ZCZDSF00022);天津市重点基金(14JC2DJC39300)

Trajectory planning of parafoil system with intricate constraints based on Gauss pseudo-spectral method

  • LUO Shuzhen ,
  • SUN Qinglin ,
  • TAN Panlong ,
  • TAO Jin ,
  • HE Yingping ,
  • LUO Haowen
Expand
  • 1. College of Computer and Control Engineering, Nankai University, Tianjin 300380, China;
    2. Aerospace Life-Support Industries Ltd, Aviation Industry Corporation of China, Xiangyang 441003, China;
    3. College of Agricultural Engineering, Henan University of Science and Technology, Luoyang 471003, China

Received date: 2016-04-23

  Revised date: 2016-09-07

  Online published: 2017-04-11

Supported by

National Natural Science Foundation of China (61273138, 61573197); National Key Technology Research and Development Program of China (2015BAK06B04); Key Technology Research and Development Program of Tianjin (14ZCZDSF00022); The Key Foundation of Tianjin (14JC2DJC39300)

摘要

翼伞系统在实际环境中飞行时易受到风场以及地形环境等复杂干扰的影响,无法精确归航,控制难度较大。针对该问题,提出了一种针对复杂多约束条件的翼伞系统的最优控制轨迹规划方法,可同时实现翼伞系统在复杂环境下逆风对准、精确着陆以及控制量全局最优的控制目标。首先,建立了风场干扰下的翼伞系统模型;然后,通过引入地形环境曲面,将复杂环境转化为实时路径约束,将轨迹着陆偏差以及逆风雀降转化为终端约束,并考虑控制量消耗最小为目标函数,以此将复杂环境下的翼伞系统的轨迹优化转化为一系列非线性的带有复杂约束的最优控制问题;最后,采用高斯伪谱法将多约束最优控制问题转化为易于求解的非线性规划问题。通过设立3组复杂环境仿真实例和实验验证,表明本文方法使翼伞系统在多种较恶劣的复杂环境中有效应对多类约束条件,规划出控制量全局最优的可行轨迹。与已有的混沌粒子群优化算法相比,本文方法具有较好的最优性和较高的精度。

本文引用格式

罗淑贞 , 孙青林 , 檀盼龙 , 陶金 , 贺应平 , 罗浩文 . 基于高斯伪谱法的翼伞系统复杂多约束轨迹规划[J]. 航空学报, 2017 , 38(3) : 320363 -320363 . DOI: 10.7527/S1000-6893.2016.0254

Abstract

The parafoil system is commonly affected by complex interferences, such as wind field and terrain environment, leading to imprecise homing and increasing control difficulty. A trajectory optimization of the parafoil system subjected to intricate constraints is proposed to realize accurate landing, flare landing against the wind, and global optimal control. A model for the parafoil system in the wind field is built. To transform the problem of trajectory optimization of the parafoil system in complex environment to the problem of optimal control with a set of nonlinear and intricate constraints, the complex terrain environment is converted into real-time path constraint by introducing into terminal constraints the terrain environment surface, the landing deviation and flare landing, and the objective function with minimum control consumption is defined. Gauss pseudo-spectral method is applied to transform the problem of optimal control with intricate constraints to the problem of easily solvable non-linear programming. Numerical simulation and experimental results show that the proposed method can efficiently plan out an optimal trajectory with high precision to meet the constraints in a variety of complex environments. A comparison with the existing method of chaotic particle swarm optimization demonstrates the outstanding performance of the proposed method.

参考文献

[1] OLEG A Y. Precision aerial delivery systems:Modeling, dynamics, and control[M]. Reston:AIAA, 2015:3-8.
[2] GOCKEL W. Concept studies of an autonomous of GNC system for gliding parachute:AIAA-1997-1465[R]. Reston:AIAA, 1997.
[3] BABU A V S, SUJA V C, REDDY C V. Three dimensional trajectory optimization of a homing parafoil[J]. IFAC Proceedings Volumes, 2014, 47(1):847-854.
[4] 梁海燕, 任志刚, 许超, 等. 翼伞系统最优归航轨迹设计的敏感度分析方法[J]. 控制理论与应用, 2015, 32(8):1004-1005. LIANG H Y, REN Z G, XU C, et al. Optimal homing trajectory design for parafoil systems using sensitivity analysis approach[J]. Control Theory & Applications, 2015, 32(8):1004-1005(in Chinese).
[5] JIAO L, SUN Q L, KANG X F, et al. Autonomous homing of parafoil and payload system based on ADRC[J]. Journal of Control Engineering and Applied Informatics, 2011, 13(3):25-31.
[6] RADEMACHER B J, LU P, STRAHAN A L, et al. In-flight trajectory planning and guidance for autonomous parafoils[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6):1697-1712.
[7] CLEMINSON J R. Path planning for autonomously-guided parafoils:A dynamic programming approach[C]//Aerodynamic Decelerator Systems Technology Conferences. Reston:AIAA, 2013:1346.
[8] 熊菁. 翼伞系统动力学与归航方案研究[D]. 长沙:国防科学技术大学, 2005:72-79. XIONG J. Research on the dynamics and homing project of parafoil system[D]. Changsha:National University of Defense Technology, 2005:72-79(in Chinese).
[9] ELNAGAR G, KAZEMI M A, RAZZAGHI M. The pseudo-spectral Legendre method for discretizing optimal control problems[J]. IEEE Transactions on Automatic Control, 1995, 40(10):1793-1796.
[10] HUNTINGTON G T. Advancement and analysis of a Gauss pseudo-spectral transcription for optimal control problems[D]. Cambridge:Massachusetts Institute of Technology, 2007:51-68.
[11] 高海涛, 张利民, 孙青林, 等. 基于伪谱法的翼伞系统归航轨迹容错设计[J]. 控制理论与应用, 2013, 30(6):702-708. GAO H T, ZHANG L M, SUN Q L, et al. Fault-tolerance design of homing trajectory for parafoil system based on pseudo-spectral method[J]. Control Theory & Applications, 2013, 30(6):702-708(in Chinese).
[12] ZHANG L M, GAO H T, CHEN Z Q, et al. Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudo-spectral method[J]. Nonlinear Dynamics, 2013, 72(1):1-8.
[13] 焦亮, 孙青林, 亢晓峰. 基于混沌粒子群优化算法的翼伞系统轨迹规划[J]. 复杂系统与复杂性科学, 2012, 9(1):47-54. JIAO L, SUN Q L, KANG X F. Route planning for parafoil system based on chaotic particle swarm optimization[J]. Complex System and Complexity Science, 2012, 9(1):47-54(in Chinese).
[14] TAO J, SUN Q L, ZHU E L, et al. Quantum genetic algorithm based homing trajectory planning of parafoil system[C]//34th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2015:2523-2528.
[15] 谢亚荣, 吴庆宪, 姜长生, 等. 粒子群算法在翼伞空投系统航迹规划中的应用[J]. 航空兵器, 2010(5):8-9. XIE Y R,WU Q X, JIANG C S, et al. Application of particle swarm optimization algorithm in route planning for parafoil airdrop system[J]. Aero Weaponry, 2010(5):8-9(in Chinese).
[16] 金敏, 鲁华祥. 一种遗传算法与粒子群优化的多子群分层混合算法[J]. 控制理论与应用, 2013, 30(10):1231-1238. JIN M, LU H X. A multi-subgroup hierarchical hybrid of genetic algorithm and particle swarm optimization[J]. Control Theory & Applications, 2013, 30(10):1231-1238(in Chinese).
[17] ADELFANG S I, SMITH O E. Gust models for launch vehicle ascent[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1998:1-8.
[18] 王晓光, 章卫国, 刘洋. 伴飞诱饵干扰下的自杀式无人机攻击策略[J]. 航空学报, 2015, 36(9):3137-3146. WANG X G, ZHANG W G, LIU Y. Suicide drones' attack strategy on the condition of escort free-flight decoys influence[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3137-3146(in Chinese).
[19] 崔乃刚, 黄盘兴, 路菲, 等. 基于混合优化的运载器大气层内上升段轨迹快速规划方法[J]. 航空学报, 2015, 36(6):1915-1923. CUI N G, HUANG P X, LU F, et al. A hybrid optimization approach for rapid endo-atmospheric ascent trajectory planning of launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1915-1923(in Chinese).
[20] 陈鹤, 方勇纯, 孙宁, 等. 基于伪谱法的双摆吊车时间最优消摆轨迹规划策略[J]. 自动化学报, 2016, 42(1):153-160. CHEN H, FANG Y C, SUN N, et al. Pseudo-spectral method based time optimal anti-swing trajectory planning for double pendulum crane systems[J]. Acta Automatica Sinica, 2016, 42(1):153-160(in Chinese).
[21] 孙青林. 翼伞自主归航半实物仿真系统:CN201110174341.7[P]. 2012-01-18. SUN Q L. Hardware-in-the-loop simulation system for autonomous homing of the parafoil system:CN201110174341.7[P]. 2012-01-18(in Chinese).

文章导航

/