倾转旋翼机动态倾转过渡过程的操纵策略优化
收稿日期: 2016-10-19
修回日期: 2016-11-25
网络出版日期: 2017-03-28
基金资助
国家自然科学基金(11672128)
Control strategy optimization of dynamic conversion procedure of tilt-rotor aircraft
Received date: 2016-10-19
Revised date: 2016-11-25
Online published: 2017-03-28
Supported by
National Natural Science Foundation of China (11672128)
利用最优控制方法研究倾转旋翼机的最优动态倾转过渡过程,并得到最优操纵策略,使得由时间、姿态角变化以及驾驶员工作负荷等组成的性能指标达到最小。首先,在基本纵向刚体飞行动力学模型的基础上引入混合操纵方程,并使用杆量位移的一阶导数作为控制量,形成适用于计算倾转旋翼机动态倾转过渡过程的飞行动力学模型,从而能在动态倾转操纵策略优化过程中考虑到操纵系统特性对操纵量变化速度的限制,以及避免操纵量在优化过程中出现跳跃不连续。然后,将倾转旋翼机的最优动态倾转过渡过程转化为非线性动态最优控制问题,建立合理的性能指标,并采用直接转换法和序列二次规划算法进行求解。最后,以XV-15倾转旋翼机为样机,分别计算正向和逆向最优动态倾转过渡过程,并与驾驶员飞行仿真数据进行对比。结果表明:飞行状态量的时间历程与文献吻合地较好,且俯仰姿态角和杆量位移变化更加柔和。最优控制方法可以用于研究倾转旋翼机的最优动态倾转过渡过程。
严旭飞 , 陈仁良 . 倾转旋翼机动态倾转过渡过程的操纵策略优化[J]. 航空学报, 2017 , 38(7) : 520865 -520865 . DOI: 10.7527/S1000-6893.2017.520865
The optimal control theory is applied to investigate the optimal dynamic conversion procedure of tilt-rotor aircraft to minimize the performance index described as the weighted sum of time consumed, variation of flight attitude and pilot workload. A flight dynamic model is built to extend the basic longitudinal rigid-body flight dynamic model with mixed control equations. The rates of pilot control sticks are set as the control variables to avoid jump discontinuities of controls in control strategy optimization. The dynamic conversion procedure is transformed into a dynamic optimal control problem with an appropriate performance index. The optimal control problem is formulated into a nonlinear programming problem and solved by a sparse sequential quadratic programming. XV-15 tilt-rotor aircraft is taken as the sample for the demonstration of conversion and reconversion. The results indicate that the variations of state variables are in good agreement with the data from flight simulation, and the variations of pitch attitude and pilot controls are relatively more gentle. The optimal control theory can be applied to investigate the optimal dynamic conversion procedure.
[1] 王奇, 吴文海. 一种非线性自适应切换控制混合方法及其在倾转旋翼机上的应用[J]. 航空学报, 2015, 36(10): 3359-3369. WANG Q, WU W H. A nonlinear adaptive switching control blending method and its application to tiltrotor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3359-3369 (in Chinese).
[2] 夏青元, 徐锦法, 金开保. 倾转旋翼飞行器的建模和操纵分配策略[J]. 航空动力学报, 2013, 28(9): 2016-2028. XIA Q Y, XU J F, JIN K B. Tilt-rotor aircraft modeling and its manipulation assignment strategy[J]. Journal of Aerospace Power, 2013, 28(9): 2016-2028 (in Chinese).
[3] 陈永, 龚华军, 王彪. 倾转旋翼机过渡段纵向姿态控制技术研究[J]. 飞行力学, 2011, 29(1): 30-33. CHEN Y, GONG H J, WANG B. Research on longitudna1 attitude contro1 technology of tilt rotor during transition[J]. Flight Dynamics, 2011, 29(1): 30-33 (in Chinese).
[4] PU H Z, ZHEN Z Y, GAO C. Tiltrotor aircraft attitude control in conversion mode based on optimal preview control[C]//Guidance, Navigation and Control Conference. Piscataway, NJ: IEEE Press, 2014: 1544-1548.
[5] RYSDYK R T, CALISE A J. Adaptive model inversion flight control for tilt-rotor aircraft[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(3): 402-407.
[6] BRICK S, FISCHER D. CV-22 osprey flight path cueing flight director system[C]//AHS Annual Forum Proceedings. Fairfax, VA: AHS, 1998: 251-255.
[7] KLEIN P D, NICKS C O. Flight director and approach profile development for civil tiltrotor terminal area operations[C]//AHS 54th International Annual Forum. Fairfax, VA: AHS, 1998: 1120-1133.
[8] CALISE A J, RYSDYK R. Research in nonlinear flight control for tiltrotor aircraft operating in the terminal area: NASA CR-203112[R]. Washington, D.C.: NASA, 1996.
[9] MARR R L, RODERICK W E B. Handling qualities evaluation of the XV-15 tilt rotor aircraft[J]. Journal of the American Helicopter Society, 1975, 20(2): 23-33.
[10] KIM C J, SUNG S, PARK S H, et al. Numerical time-scale separation for rotorcraft nonlinear optimal control analyses[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2): 658-673.
[11] BOTTASSO C L, CROCE A, LEONELLO D, et al. Optimization of critical trajectories for rotorcraft vehicles[J]. Journal of the American Helicopter Society, 2005, 50(2): 165-177.
[12] JHEMI A A, CARLSON E B, ZHAO Y J, et al. Optimization of rotorcraft flight following engine failure[J]. Journal of the American Helicopter Society, 2004, 49(2): 117-126.
[13] CARLSON E B, ZHAO Y J. Optimal city-center takeoff operation of tiltrotor aircraft in one engine failure[J]. Journal of Aerospace Engineering, 2004, 17(1): 26-39.
[14] CARLSON E B, ZHAO Y J. Prediction of tilt-rotor height-velocity diagrams using optimal control theory[J]. Journal of Aircraft, 2003, 40(5): 896-905.
[15] CARLSON E B, ZHAO Y J. Optimal short takeoff of tiltrotor aircraft in one engine failure[J]. Journal of Aircraft, 2002, 39(2): 280-289.
[16] ZHAO Y, CARLSON E, JHEMI A, et al. Optimization of rotorcraft flight in engine failure[C]//AHS Annual Forum Proceedings. Fairfax, VA: AHS, 2000: 523-536.
[17] CARLSON E B, ZHAO Y J, CHEN R T N. Optimal trajectories for tiltrotor aircraft in total power failure[C]//AHS 54th International Annual Forum. Fairfax, VA: AHS, 1998: 1368-1380.
[18] FERGUSON S W. A mathematical model for real time flight simulation of a generic tilt rotor aircraft: NASA CR-166536[R]. Washington, D.C.: NASA, 1988.
[19] FERGUSON S W. Development and validation of a simulation for a generic tilt-rotor aircraft: NASA CR-166537[R]. Washington, D.C.: NASA, 1989.
[20] 曹芸芸, 陈仁良. 倾转旋翼飞行器发动机短舱倾转角度-速度包线分析[J]. 航空动力学报, 2011, 26(10): 2174-2180. CAO Y Y, CHEN R L. Investigation on nacelle of conversion envelope analysis method of tiltrotor aircraft[J]. Journal of Aerospace Power, 2011, 26(10): 2174-2180 (in Chinese).
[21] GILL P E, MURRAY W, SAUNDERS M A. User’s guide for SNOPT version 7: Software for large-scale nonlinear programming[D]. San Diego: University of California, 2007: 4-29.
/
〈 | 〉 |