电子电气工程与控制

回溯降维相干分布式非圆信号DOA快速估计

  • 代正亮 ,
  • 巴斌 ,
  • 张彦奎 ,
  • 崔维嘉 ,
  • 王大鸣
展开
  • 解放军信息工程大学 信息系统工程学院, 郑州 450001

收稿日期: 2016-12-07

  修回日期: 2017-03-15

  网络出版日期: 2017-03-23

基金资助

国家自然科学基金(61401513)

Fast DOA estimation for coherently distributed noncircular sources by backtracking reduced dimension

  • DAI Zhengliang ,
  • BA Bin ,
  • ZHANG Yankui ,
  • CUI Weijia ,
  • WANG Daming
Expand
  • Institute of Information System Engineering, PLA Information Engineering University, Zhengzhou 450001, China

Received date: 2016-12-07

  Revised date: 2017-03-15

  Online published: 2017-03-23

Supported by

National Natural Science Foundation of China (61401513)

摘要

在相干分布式非圆(CDNC)信号波达方向(DOA)估计中,针对阵列输出矩阵扩展后维数增加带来的较大运算量问题,基于降维的多级维纳滤波(MSWF)技术,引入回溯优化思想,提出了一种快速估计算法。该算法首先利用信号非圆特性扩展阵列输出矩阵,然后通过MSWF递推分解快速求出信号子空间,避免了计算阵列协方差矩阵及特征分解,并且在递推过程中引入回溯优化机制提高了各级匹配滤波器的估计性能,最后由最小二乘(LS)或者总体最小二乘(TLS)得到DOA估计。仿真分析表明,所提算法与相干分布式非圆信号旋转不变子空间算法(CDNC-ESPRIT)性能相当,但复杂度得到了大幅度降低,相比于基于MSWF的非圆信号快速子空间(NC-MSWF-FS)算法,在较小的复杂度代价下大幅度提升了低信噪比时的估计性能,并且对初始参考信号的选取具有了较强的鲁棒性。

本文引用格式

代正亮 , 巴斌 , 张彦奎 , 崔维嘉 , 王大鸣 . 回溯降维相干分布式非圆信号DOA快速估计[J]. 航空学报, 2017 , 38(9) : 321034 -321034 . DOI: 10.7527/S1000-6893.2017.321034

Abstract

In the estimation of Direction of Arrival (DOA) for coherently distributed noncircular (CDNC) signals, the increase of dimension caused by array output matrix extension can bring a large amount of computation. For the problem, a fast estimation algorithm based on the Multi-Stage Wiener Filter (MSWF) technology is proposed by introducing the idea of backtracking optimization. The proposed algorithm first uses the noncircularity of the signal to extend the array output matrix. The signal subspace is then obtained by using the recursive decomposition characteristic of the MSWF, so as to avoid the computation of the covariance matrix and the characteristic decomposition of the matrix. In the recursive decomposition process, the backtracking optimization mechanism is introduced to improve the estimation performance of the matched filter. The DOA estimation can be obtained by the Least Squares (LS) or the Total Least Squares (TLS). Simulation results show that the performance of the proposed algorithm with a much lower complexity is comparable with the rotation invariant subspace algorithm based on CDNC (CDNC-ESPRIT). Compared to the fast noncircular signal subspaced algorithm based on the MSWF (NC-MSWF-FS), the proposed algorithm can effectively improve performance at lower complexity cost in low signal to noise ratio. The simulation also shows that the proposed algorithm is more robust to the initial reference signal.

参考文献

[1] 潘捷, 周建江, 汪飞. 非均匀噪声稀疏均匀圆阵的二维DOA估计[J]. 航空学报, 2011, 32(3): 448-456. PAN J, ZHOU J J, WANG F. 2-D DOA estimation for sparse uniform circular array in presence of unknown nonuniform noise[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 448-456 (in Chinese).
[2] YANG B, HE F, JIN J, et al. DOA estimation for attitude determination on communication satellites[J]. Chinese Journal of Aeronautics, 2014, 27(3): 670-677.
[3] 曾文浩, 朱晓华, 李洪涛, 等. 一种稀疏阵列下的二维DOA估计方法[J]. 航空学报, 2016, 37(7): 2269-2275. ZENG W H, ZHU X H, LI H T, et al. A 2D DOA estimation method for sparse array[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2269-2275 (in Chinese).
[4] 郑植. 分布式信源低复杂度参数估计算法研究[D]. 成都: 电子科技大学, 2011. ZHENG Z. Research on low complexity parameter estimation algorithm for distributed source[D]. Chengdu: University of Electronic Science and Technology, 2011 (in Chinese).
[5] SHAHBAZPANAHI S, VALAEE S, BASTANI M H. Incoherently distributed source localization[J]. Scientia Iranica, 2000, 7(3): 244-252.
[6] LEE S R, SONG I, LEE Y U, et al. Estimation of two-dimensional DOA under a distributed source model and some simulation results[J]. IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences, 1996, 79(9): 1475-1485.
[7] VALAEE S, CHAMPAGNE B, KABAL P. Parametric localization of distributed sources[J]. IEEE Transactions on Signal Processing, 1995, 43(9): 2144-2153.
[8] SHAHBAZPANAHI S, VALAEE S, BASTANI M H. Distributed source localization using ESPRIT algorithm[J]. IEEE Transactions on Signal Processing, 2001, 49(10): 2169-2178.
[9] LEE J, JOUNG J, KIM J D. A method for the direction-of-arrival estimation of incoherently distributed sources[J]. IEEE Transactions on Vehicular Technology, 2008, 57(5): 2885-2893.
[10] SIESKUL B T. An asymptotic maximum likelihood for joint estimation of nominal angles and angular spreads of multiple spatially distributed sources[J]. IEEE Transactions on Vehicular Technology, 2010, 59(3): 1534-1538.
[11] GAN L, WANG X Q, LIAO H S. DOA estimation of coherently distributed sources based on block-sparse constraint[J]. IEICE Transactions Communication, 2012, 95(7): 2472-2476.
[12] 刘章孟, 周一宇, 吴海斌, 等. 非圆信号的贝叶斯稀疏重构阵列测向方法[J]. 航空学报, 2014, 35(3): 821-827. LIU Z M, ZHOU Y Y, WU H B. Direction of arrival estimation method of non-circular signals via sparse Bayesian reconstruction[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 821-827 (in Chinese).
[13] 尹洁昕, 吴瑛, 王鼎. 基于辅助阵元的非圆信号自校正算法及其性能分析[J]. 通信学报, 2014(2): 153-165. YIN J X, WU Y, WANG D. Auto-calibration method and performance analysis for noncircular sources based on instrumental sensors[J]. Journal on Communications, 2014(2): 153-165 (in Chinese).
[14] 杨学敏, 李广军, 郑植. 基于稀疏表示的相干分布式非圆信号的参数估计[J]. 电子与信息学报, 2014, 36(1): 164-168. YANG X M, LI G J, ZHENG Z. Parameters estimation of coherently distributed non-circular signal based on sparse representation[J]. Journal of Electronics and Information Technology, 2014, 36(1): 164-168 (in Chinese).
[15] WAN L, HAN G, JIANG J, et al. DOA estimation for coherently distributed sources considering circular and noncircular signals in massive MIMO systems[J]. IEEE Systems Journal, 2017, 11(1): 41-49.
[16] YANG X, LI G, ZHENG Z, et al. 2D DOA estimation of coherently distributed noncircular sources[J]. Wireless Personal Communications, 2014, 78(2): 1095-1102.
[17] SONG N, DE LAMARE R C, HAARDT M, et al. Adaptive widely linear reduced-rank interference suppression based on the multistage wiener filter[J]. IEEE Transactions on Signal Processing, 2012, 60(8): 4003-4016.
[18] 黄磊, 吴顺君, 张林让, 等. 快速子空间分解方法及其维数的快速估计[J]. 电子学报, 2005, 33(6): 977-981. HUANG L, WU S J, ZHANG L R, et al. Fast method for subspace decomposition and its dimension estimation[J]. Acta Electronica Sinica, 2005, 33(6): 977-981 (in Chinese).
[19] 宋爱民, 李堰, 刘剑, 等. 非圆信号多级维纳滤波DOA估计求根算法[J]. 电子科技大学学报, 2013, 42(1): 53-57. SONG A M, LI Y, LIU J, et al. DOA estimation of noncircular signals with multistage wiener filter and polynomial rooting[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(1): 53-57 (in Chinese).
[20] ZENG Y, YANG Y, LU G, et al. Fast method for DOA estimation with circular and noncircular signals mixed together[J]. Journal of Electrical & Computer Engineering, 2014, 2014: 1-7.
[21] STEINWANDT J, ROEMER F, HAARDT M, et al. R-dimensional ESPRIT-type algorithms for strictly second-order non-circular sources and their performance analysis[J]. IEEE Transactions on Signal Processing, 2015, 62(18): 4824-4838.

文章导航

/