单个压电风扇传热特性
收稿日期: 2016-11-24
修回日期: 2017-02-09
网络出版日期: 2017-03-20
基金资助
国家自然科学基金(51106073);中央高校基本科研业务费专项资金(NS2014018)
Characteristics of heat transfer with single piezoelectric fan
Received date: 2016-11-24
Revised date: 2017-02-09
Online published: 2017-03-20
Supported by
National Natural Science Foundation of China (51106073);the Fundamental Research Funds for the Central Universities (NS2014018)
基于压电风扇运动规律的激光多普勒测振仪测试结果,利用动网格技术对单个垂直壁面压电风扇的三维非定常流动和传热特性进行了数值模拟,同时应用红外热像仪对表面局部对流换热系数分布进行了测量。研究结果表明:时均对流换热系数的数值模拟与实验结果具有良好的一致性;加热表面的存在,导致压电风扇激励的涡系结构与其在自由空间振动时诱导的流场存在一定的差异,脱落涡相比于自由空间时更易于破碎;压电风扇振动诱导的涡冲击加热表面所形成的近壁流动呈现出明显的平行于风扇的侧向流动,而在压电风扇两侧边则出现卷吸的特点,叶尖包络区对应的壁面局部对流换热有显著的强化作用,表面对流换热系数分布在包络区外围呈现出明显的哑铃状特征。
李鑫郡 , 张靖周 , 谭晓茗 . 单个压电风扇传热特性[J]. 航空学报, 2017 , 38(7) : 120982 -120982 . DOI: 10.7527/S1000-6893.2017.120982
A numerical simulation of the three-dimensional unsteady flow and heat transfer characteristics of a single piezoelectric fan arranged normally to the heated surface is performed using dynamic meshing scheme. The displacement of the vibrating fan is determined from the vibration test by using the laser doppler vibrameter. An experimental test for the distribution of the local convective heat transfer coefficient is also made using the infrared camera. The distribution of the cycle-averaged local heat transfer coefficient obtained by the numerical simulation is found to be in good consistence with the test result. Due to the existence of the heated surface, the vortical structures excited by the piezoelectric fan behave somewhat differently from those observed in the free space. The shedding vortex is easier to be broken down in relation to the case in the free space. The near-wall flow field induced by the piezoelectric fan demonstrates obvious lateral flow parallel to the fan, and suction flow on both sides of the fan. The local convective heat transfer in the fan-tip vibration envelope is effectively enhanced. Dumbbell-shaped distribution of local convective heat transfer around the fan-tip vibration envelope is demonstrated.
[1] YOO J H, HONG J I, CAO W. Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices[J]. Sensors Actuators A, 2000, 79(1): 8-12.
[2] WU T, RO P I, KINGON A I, et al. Piezoelectric resonating structures for microelectronic cooling[J]. Smart Materials and Structures, 2003, 12(2): 181-187.
[3] GILSON G M, PICKERING S J, HANN D B, et al. Piezoelectric fan cooling: A novel high reliability electric machine thermal management solution[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11): 4841-4851.
[4] TODA M. Theory of air flow generation by a resonant type PVF2 bimorph cantilever vibrator[J]. Ferroelectrics, 1979, 22(3): 911-918.
[5] SYDNEY M W, BASAK S, GARIMELLA S V, et al. Piezoelectric fans using higher flexural models for electronics cooling applications[J]. IEEE Transactions on Components and Packaging Technologies, 2007, 30(1): 119-128.
[6] KIM Y H, WERELEY S T, CHUN C H. Phase-resolved flow field produced by a vibrating cantilever plate between two endplates[J]. Physics in Fluids, 2004, 16(1): 145-162.
[7] KIM Y H, CHUN C H, WERELEY S. Flow field around a vibrating cantilever: Coherent structure education by continuous wavelet transform and proper orthogonal decomposition[J]. Journal of Fluid Mechanics, 2011, 669: 584-606.
[8] CHOI M, CIERPKA C, KIM Y H. Vortex formation by a vibrating cantilever[J]. Journal of Fluids and Structures, 2012, 31: 67-78.
[9] ACIKLAIN T, WAIT S M, GARIMELLA S V. Experimental investigation of the thermal performance of piezoelectric fans[J]. Heat Transfer Engineering, 2004, 25(1): 4-14.
[10] KIMBER M, GARIMELLA S V, RAMAN A. Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers[J]. ASME Journal of Heat Transfer, 2007, 129(9): 1168-1176.
[11] KIMBER M, GARIMELLA S V. Measurement and prediction of the cooling characteristics of a generalized vibrating piezoelectric fan[J]. International Journal of Heat and Mass Transfer, 2009, 52(19-20): 4470-4478.
[12] KIMBER M, GARIMELLA S V. Cooling performance of arrays of vibrating cantilevers[J]. ASME Journal of Heat Transfer, 2009, 131(11): 111401-1-8.
[13] LIU S F, HUANG R T, SHEU W J, et al. Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement[J]. International Journal of Heat and Mass Transfer, 2009, 52(11-12): 2565-2570.
[14] FAIRUZ Z M, SUFIAN S F, ABDULLAH M Z, et al. Effect of piezoelectric fan mode shape on the heat transfer characteristics[J]. International Communications in Heat and Mass Transfer, 2014, 52: 140-151.
[15] 谭蕾, 谭晓茗, 张靖周. 压电风扇激励非定常流动和换热特性数值研究[J]. 航空学报, 2013, 34(6): 1277-1284. TAN L, TAN X M, ZHANG J Z. Numerical investigation on unsteady flow and heat transfer characteristics of piezoelectric fan[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1277-1284 (in Chinese).
[16] TAN L, ZHANG J Z, TAN X M. Numerical investigation of convective heat transfer on a vertical surface due to resonating cantilever beam[J]. International Journal of Thermal Sciences, 2014, 80: 93-107.
[17] 孔岳, 李敏, 吴蒙蒙. 压电风扇非定常流场速度分布的数值研究[J]. 工程力学, 2016, 33(1): 209-216. KONG Y, LI M, WU M M. Numerical investigation on the velocity of unsteady flow field induced by piezoelectric fan[J]. Engineering Mechanics, 2016, 33(1): 209-216 (in Chinese).
[18] BREVET P, DEJEU C, DORIGNAC E, et al. Heat transfer to a row of impinging jets in consideration of optimization[J]. International Journal of Heat and Mass Transfer, 2002, 45(20): 4191-4200.
[19] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1998, 1(1): 3-17.
[20] LIN C N. Enhanced heat transfer performance of cylindrical surface by piezoelectric fan under forced convection conditions[J]. International Journal of Heat and Mass Transfer, 2013, 60: 296-308.
[21] JEONG J, HUSSAIN F. On the definition of a vortex[J]. Journal of Fluid Mechanics, 1995, 285(1): 69-94.
/
〈 |
|
〉 |