固体力学与飞行器总体设计

基于频响函数的复合材料空间分布模量场识别

  • 范刚 ,
  • 吴邵庆 ,
  • 李彦斌 ,
  • 费庆国 ,
  • 韩晓林
展开
  • 1. 东南大学 工程力学系, 南京 210096;
    2. 江苏省工程力学分析重点实验室, 南京 210096;
    3. 东南大学 机械工程学院, 南京 211189

收稿日期: 2016-12-06

  修回日期: 2016-12-27

  网络出版日期: 2017-03-15

基金资助

国家自然科学基金(11402052,11572086);教育部新世纪优秀人才支持计划(NCET-11-0086);江苏省自然科学基金(BK20140616)

Identification of spatial distribution of modulus field of composite material based on frequency response function

  • FAN Gang ,
  • WU Shaoqing ,
  • LI Yanbin ,
  • FEI Qingguo ,
  • HAN Xiaolin
Expand
  • 1. Department of Engineering Mechanics, Southeast University, Nanjing 210096, China;
    2. Jiangsu Key Laboratory of Engineering Mechanics, Nanjing 210096, China;
    3. School of Mechanical Engineering, Southeast University, Nanjing 211189, China

Received date: 2016-12-06

  Revised date: 2016-12-27

  Online published: 2017-03-15

Supported by

National Natural Science Foundation of China (11402052,11572086);Program for New Century Excellent Talents in University (NCET-11-0086);Natural Science Foundation of Jiangsu Province of China (BK20140616)

摘要

针对纤维编织复合材料宏观力学性能的非均匀特性,提出了基于频响函数(FRF)的复合材料梁空间分布弹性模量场的识别方法。采用基于灵敏度分析的方法构造优化问题,以实测和计算加速度频响残差范数最小为目标函数,进而通过迭代求解识别出复合材料梁弹性模量的空间分布。首先,以悬臂梁模型为研究对象进行数值仿真分析,验证识别方法的正确性。进一步开展复合材料梁模态试验研究,将复合材料三点弯曲试验获取的近似均质化弹性模量作为优化问题的初值;利用非接触测量方法获取模态试验中梁上各测点处的动位移响应,并计算得到各测点的加速度频响函数作为优化问题的输入值。结果表明:采用所提出的识别方法获取的模量场计算得到的梁上各处频响函数与试验获取值吻合,且所提方法在实测动响应存在噪声污染工况下是可行的。该方法能够为复合材料等效建模提供更加准确的弹性模量场。

本文引用格式

范刚 , 吴邵庆 , 李彦斌 , 费庆国 , 韩晓林 . 基于频响函数的复合材料空间分布模量场识别[J]. 航空学报, 2017 , 38(8) : 221024 -221024 . DOI: 10.7527/S1000-6893.2017.221024

Abstract

Considering the heterogeneity of the macroscopic mechanical properties of fiber braided composites, an identification method for spatial distribution of elastic modulus field of the composite beam structure based on Frequency Response Function (FRF) is proposed. The optimization problem is constructed based on sensitivity analysis. The minimum norm of the difference between the measured and the calculated frequency response of acceleration is taken as the objective function, and the spatial distribution of the elastic modulus of the composite beam is then identified by iterative methods. Numerical simulation of a cantilever beam is conducted to verify the correctness of the identification method, and the modal test is then carried out. The homogeneous elastic modulus obtained from a three-point bending test of the same composite beam is taken as the initial value of the optimization problem. The non-contact measurement approach is adopted to obtain the dynamic displacement response of each measuring point on the beam in the modal test, and the acceleration frequency response function is calculated as input data. Results show that the frequency response functions of each measuring point on the beam calculated by the identified elastic modulus field agree well with the experimental values, and the proposed method is feasible when the measurement dynamic responses are noise contaminated. This method is capable of providing a more accurate elastic modulus field for equivalent modeling of composite materials.

参考文献

[1] 汪星明, 邢誉峰. 三维编织复合材料研究进展[J]. 航空学报, 2010, 31(5):914-927. WANG X M, XING Y F. Developments in research on 3D braided composites[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):914-927(in Chinese).
[2] 杨乃宾. 新一代大型客机复合材料结构[J]. 航空学报, 2008, 29(3):596-604. YANG N B. Composite structure for new generation large commercial jet[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):596-604(in Chinese).
[3] 章令晖, 陈萍. 复合材料在空间遥感器中的应用进展及关键问题[J]. 航空学报, 2015, 36(5):1385-1400. ZHANG L H, CHEN P. Application progress of composites in space remote sensor and its key problems[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1385-1400(in Chinese).
[4] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322. MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2):317-322(in Chinese).
[5] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
[6] 高思阳, 张晶, 付强, 等. 纤维复合材料刚度设计的力学原理及其应用[J]. 航空学报, 2009, 30(7):1227-1235. GAO S Y, ZHANG J, FU Q, et al. Mechanical principles for stiffness design of fibrous composites and their application[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1227-1235(in Chinese).
[7] 邢誉峰, 田金梅. 三维正交机织复合材料单胞特征单元及其应用[J]. 航空学报, 2007, 28(4):881-885. XING Y F, TIAN J M. Unit cell eigen-element of 3-D orthogonal woven composites and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):881-885(in Chinese).
[8] DALMAZ A, DUCRET D, GUERJOUMA R E, et al. Elastic moduli of a 2.5D C/SiC composite:Experimental and theoretical estimates[J]. Composites Science and Technology, 2000, 60(6):913-925.
[9] 刘玉佳, 燕瑛, 苏玲. 双随机分布细观分析模型与复合材料性能预报[J]. 复合材料学报, 2011, 28(2):206-210. LIU Y J, YAN Y, SU L. Double-random distribution model and properties prediction of composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2):206-210(in Chinese).
[10] 孔春元, 孙志刚, 高希光, 等. 2.5维C/SiC复合材料经向拉伸性能[J]. 复合材料学报, 2012, 29(2):192-198. KONG C Y, SUN Z G, GAO X G, et al. Tensile property of 2.5D C/SiC composites in warp direction[J]. Acta Materiae Compositae Sinica, 2012, 29(2):192-198(in Chinese).
[11] RAHMANI B, MORTAZAVI F, VILLEMURE I, et al. A new approach to inverse identification of mechanical properties of composite materials:Regularized model updating[J]. Composite Structures, 2013, 105:116-125.
[12] BOLZON G, TALASSI M. An effective inverse analysis tool for parameter identification of anisotropic material models[J]. International Journal of Mechanical Sciences, 2013, 77:130-144.
[13] GRAS R, LECLERC H, HILD F, et al. Identification of a set of macroscopic elastic parameters in a 3D woven composite:Uncertainty analysis and regularization[J]. International Journal of Solids and Structures, 2015, 55:2-16.
[14] SEPAHVAND K, MARBURG S. Identification of composite uncertain material parameters from experimental modal data[J]. Probabilistic Engineering Mechanics, 2014, 37:148-153.
[15] 姜东, 陆韬, 吴邵庆, 等. 2.5维C/SiC复合材料弹性参数不确定性识别方法研究[J]. 振动工程学报, 2014, 27(3):318-325. JIANG D, LU T, WU S Q, et al. An elastic moduli identification method of 2.5 dimensional C/SiC composite with uncertainty[J]. Journal of Vibration Engineering, 2014, 27(3):318-325(in Chinese).
[16] MEHREZ L, MOENS D, VANDEPITTE D. Stochastic identification of composite material properties from limited experimental databases, Part I:Experimental database construction[J]. Mechanical Systems and Signal Processing, 2012, 27:471-483.
[17] JIANG D, ZHANG P, FEI Q G, et al. Comparative study of model updating methods using frequency response function data[J]. Journal of Vibroengineering, 2014, 16(5):2305-2318.
[18] MOTTERSHEAD J E, LINK M, FRISWELL M I. The sensitivity method in finite element model updating:A tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(7):2275-2296.
[19] FEI Q G, JIANG D, ZHANG D H, et al. Finite element model updating using base excitation response function[J]. Journal of Vibroengineering, 2013, 15(1):9-22.
[20] 李德葆, 陆秋海. 工程振动试验分析[M]. 北京:清华大学出版社, 2004:269-287. LI D B, LU Q H. Analysis of experiments in engineering vibration[M]. Beijing:Tsinghua University Press, 2004:269-287(in Chinese).
[21] 唐进元, 陈维涛, 陈思雨, 等. 一种新的小波阈值函数及其在振动信号去噪分析中的应用[J]. 振动与冲击, 2009, 28(7):118-121. TANG J Y, CHEN W T, CHEN S Y, et al. Wavelet-based vibration signal denoising with a new adaptive thresholding function[J]. Journal of Vibration and Shock, 2009, 28(7):118-121(in Chinese).
[22] DONG W Y, DING H. Full frequency de-noising method based on wavelet decomposition and noise-type detection[J]. Neurocomputing, 2016, 214:902-909.

文章导航

/