固体力学与飞行器总体设计

基于声发射的铝蜂窝板超高速撞击损伤模式识别方法

  • 刘源 ,
  • 庞宝君 ,
  • 迟润强 ,
  • 才源
展开
  • 哈尔滨工业大学 航天学院, 哈尔滨 150080

收稿日期: 2016-05-05

  修回日期: 2017-02-13

  网络出版日期: 2017-03-03

基金资助

国家"十二五"空间碎片专项(K0203210);中央高校基本科研业务费专项资金(HIT.NSRIF.2015029)

A damage pattern recognition method for hypervelocity impact on aluminum honeycomb core sandwich based on acoustic emission

  • LIU Yuan ,
  • PANG Baojun ,
  • CHI Runqiang ,
  • CAI Yuan
Expand
  • School of Astronautics, Harbin Institute of Technology, Harbin 150080, China

Received date: 2016-05-05

  Revised date: 2017-02-13

  Online published: 2017-03-03

Supported by

National Special Project for Space Debris during the Twelfth Five-year Plan Period (K0203210);the Fundamental Research Funds for Central Universities (HIT.NSRIF.2015029)

摘要

为通过声发射技术识别铝合金蜂窝板超高速撞击(HVI)的损伤状态,提出一种基于神经网络的损伤模式识别方法。通过超高速撞击实验获取声发射信号,结合精确源定位技术、时频分析技术、小波分析技术及模态声发射技术,提出了10个与损伤相关的特征参数,通过非参数检验分析其与损伤的关系,设计了一种基于贝叶斯正则化BP神经网络的超高速撞击损伤模式识别方法。建立最优网络模型,通过不同参数组合识别能力分析,优选出2种特征参数组合,通过非同源样本对其损伤模式识别能力进行验证。结果表明:传播距离与损伤模式无关,却是识别损伤模式的重要参数;125~250 kHz频域的自动加窗小波能量比会降低损伤模式的识别能力;采用贝叶斯正则化的BP神经网络可以较好地识别蜂窝板超高速撞击损伤模式,参数组合为传播距离、上升时间、持续时间、截止频率、4个自动加窗小波能量比及小波能量熵,共9个参数,对任意选取非同源样本识别错分率仅为9.38%。

本文引用格式

刘源 , 庞宝君 , 迟润强 , 才源 . 基于声发射的铝蜂窝板超高速撞击损伤模式识别方法[J]. 航空学报, 2017 , 38(5) : 220401 -220401 . DOI: 10.7527/S1000-6893.2017.220401

Abstract

A damage pattern recognition method based on neural network is proposed to recognize the damage state of aluminum honeycomb core sandwich under hypervelocity impact (HVI) through acoustic emission. A variety of experimental signals are obtained, 10 characteristic parameters related to damage are presented by test of nonparametric analysis the relationship with damage pattern, combining with precise source localization, time-frequency analysis, wavelet transformation and modal acoustic emission technology. The BP neural net mode based on Bayesian regularization is established by analyzing the relationship with damage pattern using nonparametric analysis. After establishing the optimal network model, two optimal combinations are selected by analyzing the recognition ability of different parameter combinations, the damage pattern recognition ability is verified with non-same source sample. The result shows that propagation distance is a significant parameter but irrelevant to damage pattern. Automatic window wavelet energy ratio within 125-250 kHz frequency range decrease the ability of damage pattern recognition. Using a Bayesian regularization neural network with combination of 9 parameters, including propagation distance, rise time, hold time, cut-off frequency, 4 kinds of automatic window wavelet energy ratio and wavelet energy entropy, presents 9.38% wrong point rate to a group of random non-same source sample.

参考文献

[1] Upper stage explosion places LEO satellites at risk[N]. Orbital Debris Quarterly News, 2013-01-17.
[2] LIOU J C, GIOVANE F, CORSARO R, et al. LAD-C-A large area debris collector on the ISS[C]//36th COSPAR Scientific Assembly. Paris:Committee on Space Research (COSPAR), 2006.
[3] PROSSER W H, MADARAS E I. Distributed impact detector system (DIDS) health monitoring system evaluation:NASA/TM-2010-216694[R]. Hampton, VA:Langley Research Center, 2010.
[4] SPENCER G, SCHAFER F, TANAKA M, et al. Design and initial calibration of micrometeoroid space debris detector (MDD)[C]//Proceedings of the 4th European Conference on Space Debris. Pairs:European Space Agency, 2005, 587:2275.
[5] SCHAFER F, JANOVSKY R. Impact sensor network for detection of hypervelocity impacts on spacecraft[J]. Acta Astronautica, 2007, 61(10):901-911.
[6] SCHWANETHAL J P, MCBRIDE N, GREEN S F, et al. Analysis of impact data from the DEBIE (debris in-orbit evaluator) sensor in polar low earth orbit[C]//Proceedings of the 4th European Conference on Space Debris. Pairs:European Space Agency, 2005, 587:177.
[7] 唐颀, 庞宝君, 韩增尧, 等. 单层板超高速撞击声发射波的频谱特征分析[J]. 宇航学报, 2007, 28(4):1059-1064. TANG Q, PANG B J, HAN Z Y, et al. Analysis of frequency spectrum character of acoustic emission wave from hypervelocity impact on single-sheet plate[J]. Journal of Astronautics, 2007, 28(4):1059-1064 (in Chinese).
[8] 王晓宇, 张超, 孙维, 等. 航天器密封舱加筋壁板碎片撞击监测技术研究[J]. 实验流体力学, 2014, 28(4):70-77. WANG X Y, ZHANG C, SUN W, et al. Research on structural health monitoring method for locating space debris impact on spacecraft seal structure[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4):70-77 (in Chinese).
[9] 刘武刚, 庞宝君, 韩增尧, 等. 基于小波分析技术的高速撞击声发射源定位[J]. 高技术通讯, 2009, 19(2):181-187. LIU W G, PANG B J, HAN Z Y, et al. Acoustic emission detection and location for hypervelocity impacts based on wavelet transform[J]. Chinese High Technology Letters, 2009, 19(2):181-187 (in Chinese).
[10] LIU Z D, PANG B J. A method based on acoustic emission for locating debris cloud impact[C]//Proceedings of the SPIE 7522, 4th International Conference on Experimental Mechanics. Bellingham, WA:SPIE, 2010.
[11] 庞宝君, 刘治东, 唐颀. 基于HHT变换的声发射源平面定位方法[J]. 无损检测, 2010(1):1-5. PANG B J, LIU Z D, TANG Q. A method based on HHT for acoustic emission source location[J]. Nondestructive Testing, 2010(1):1-5 (in Chinese).
[12] 张凯, 庞宝君, 林敏. 碎片云撞击声发射信号能量特征小波包分析[J]. 振动与冲击, 2012, 31(12):125-128. ZHANG K, PANG B J, LIN M. Wavelet packet analysis for acoustic emission signals caused by debris cloud impact[J]. Journal of Vibration and Shock, 2012, 31(12):125-128 (in Chinese).
[13] 熊秋鹏. 基于神经网络技术的空间碎片损伤模式识别研究[D]. 哈尔滨:哈尔滨工业大学, 2012:31-35. XIONG Q P. Research on space debris damage pattern recognition based on neutral network technology[D]. Harbin:Harbin Institute of Technology, 2012:31-35 (in Chinese).
[14] EMMA A T, JONATHAN P G, CLEGG R A, et al. Hypervelocity impact on spacecraft honeycomb:Hydrocode simulation and damage laws[J]. International Journal of Impact Engineering, 2003, 29(1-10):691-702.
[15] ALAVI N A, RAZAVI S B, MAJZOOBI H H. Ballistic limit determination of aluminum honeycombs-Experimental study[J]. Materials Science and Engineering A, 2008, 488(1):273-280.
[16] LIU Y, PANG B J, JIA B, et al. Modal acoustic emission based location method in honeycomb core sandwich structure[C]//Proceedings of the 6th European Conference on Space Debris. Pairs:European Space Agency, 2013, 723:183.
[17] CHAKRABORTY N, RATHOD V T, MAHAPATRA D R, et al. Guided wave based detection of damage in honeycomb core sandwich structures[J]. NDT&E International, 2012, 49(7):27-33.
[18] ROSSO O A, BLANCO S, YORDANOVA J, et al. Wavelet entropy:A new tool for analysis of short duration brain electrical signals[J]. Journal of Neurosci Methods, 2001, 105(1):65-75.
[19] MACKAY D J C. Bayesian interpolation[J]. Neural Computation, 1992; 4(3):415-447.
[20] ORRE R, LANSNER A, BATE A, et al. Bayesian neural networks with confidence estimations applied to data mining[J]. Computational Statistics & Data Analysis, 2000, 34(4):473-493.
[21] WONG B M L, LEE S Y, LEUNG K S. Data mining of Bayesian networks using cooperative coevolution[J]. Decision Support Systems, 2004, 38(3):451-472.

文章导航

/