三维等离子体MHD气动热环境数值模拟
Numerical simulation of 3D plasma MHD aero-thermal environment
Received date: 2016-12-06
Revised date: 2016-12-30
Online published: 2017-02-10
电磁流动控制技术是一个多学科交叉融合的重要研究方向,在高超声速飞行器气动特性优化、气动热环境减缓、边界层转捩和等离子体分布等流动控制方面显示出广阔的应用前景。考虑高超声速飞行器绕流流场中发生的离解、复合、电离和置换等化学反应,气体分子振动能激发以及化学非平衡效应,耦合电磁场作用并基于低磁雷诺数假设,通过数值模拟求解三维非平衡Navier-Stokes流场控制方程和Maxwell电磁场控制方程,建立磁场与三维等离子体流场耦合数值模拟方法及程序,采用典型算例进行考核。在此基础上,开展不同条件下磁场对再入三维等离子体流场以及气动热环境影响分析。研究表明:建立的高超声速飞行器的等离子体流场与磁场耦合计算方法及程序,其数值模拟结果与文献符合,外加磁场使飞行器头部弓形激波外推,磁场强度越强,激波面外推距离越大;不同磁场强度环境下,流场中温度峰值大小略有变化,变化幅度较小;磁场对绝大部分区域的热流有减缓作用,作用的大小与飞行高度、马赫数以及磁场的配置紧密相关;当前的计算条件下,飞行的高度越高,磁场的作用越明显。
丁明松 , 江涛 , 董维中 , 高铁锁 , 刘庆宗 . 三维等离子体MHD气动热环境数值模拟[J]. 航空学报, 2017 , 38(8) : 121030 -121030 . DOI: 10.7527/S1000-6893.2017.121030
Electromagnetic flow control technique, a significant multidisciplinary intersecting direction, shows wide application prospects in aerodynamic characteristics optimization, aerodynamic thermal environment mitigation, boundary layer transition and plasma distribution for flow control over hypersonic vehicle. In this paper, chemical reactions, molecular vibration excitation and chemical non-equilibrium effects are considered in the flow field of hypersonic vehicle, coupled with electromagnetic field effect and with the assumption of low magnetic Reynolds number. By solving 3D chemical non-equilibrium Navier-Stokes equations and Maxwell equations, numerical simulation method and the corresponding computational codes are developed for extra magnetic field coupled with reentry plasma flow, and are validated by numerically calculating two typical examples. These simulation results are in agreement with those in literatures. On this basis, the influence of extra magnetic field on 3D plasma flows and aero-thermal environment under different flight conditions is studied. The results show that extra magnetic field can obviously change the standoff distance of shockwave and reduce the surface heat flux in most surface regions. It is found that the greater the magnetic field strength is, the more obvious the modification effect is. The influence degree is relevant to the factors of flight altitude, velocity and extra magnetic field configuration. Under current calculation conditions, the influence degree is more obvious when the flight altitude is higher.
[1] 乐嘉陵. 再入物理[M]. 北京:国防工业出版社, 2005:9-21. LE J L. Reentry physics[M]. Beijing:National Defence Industry Press, 2005:9-21(in Chinese).
[2] MACCORMACK R W. Evaluation of the low magnetic Reynolds approximation for aerodynamic flow calculations:AIAA-2005-4780[R]. Reston, VA:AIAA, 2005.
[3] LEE J, HUERTA M A, ZHA G C. Low Rem 3D MHD hypersonic equilibrium flow using high order WENO schemes:AIAA-2010-229[R]. Reston, VA:AIAA, 2010.
[4] BISEK N J, POGGIE J. Exploration of MHD flow control for a hypersonic blunt elliptic cone with an impregnated ablator:AIAA-2011-0897[R]. Reston, VA:AIAA, 2011.
[5] CHERNYSHEV A, KURAKIN Y, SCHMIDT A. Effect of MHD system arrangement on high speed plasma flow structure around conical body:AIAA-2012-5974[R]. Reston, VA:AIAA, 2012.
[6] FUJINO T, ISHIKAWA M. Numerical simulation of MHD flow control along super orbital reentry trajectory:AIAA-2013-3000[R]. Reston, VA:AIAA, 2013.
[7] TAKAHASHI T, SHIMOSAWA Y, MASUDA K, et al. Numerical study of thermal protection using magneto-hydrodynamic flow control in mars entry flight:AIAA-2015-3365[R]. Reston, VA:AIAA, 2015.
[8] MASUDA K, SHIMOSAWA Y, FUJINO T. Three-dimensional numerical simulation of magnetohydrodynamic flow control in reentry flight:AIAA-2015-3366[R]. Reston, VA:AIAA, 2015.
[9] 赫新, 陈坚强, 邓小刚. NND格式在多维理想磁流体方程组中的应用[J]. 空气动力学学报, 2005, 23(3):267-273. HE X, CHEN J Q, DENG X G. NND scheme's application in multi-dimensional ideal magnetohydrodynamic equations[J]. Acta Aerodynamica Sinica, 2005, 23(3):267-273(in Chinese).
[10] 潘勇. 高超声速流场磁场干扰效应数值模拟方法研究[D]. 南京:南京航空航天大学, 2007. PAN Y. Numerical methods for hypersonic flowfield with magnetic interference[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
[11] 孙晓辉. 新型冲压推进系统波系结构及其MHD控制[D]. 南京:南京理工大学, 2013. SUN X H. Investigations of the wave structures of new concept RAM propulsion systems and their MHD control[D]. Nanjing:Nanjing University of Science and Technology, 2013(in Chinese).
[12] 张洪量. 高超声速流场电磁干扰数值模拟研究[D]. 南京:南京航空航天大学, 2014. ZHANG H L. Numerical simulation for hypersonic flowfield with electromagnetic interference[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[13] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京:北京航空航天大学, 1996. DONG W Z. Numerical simulation and analysis of thermo-chemical non-equilibrium effects at hypersonic flows[D]. Beijing:Beihang University, 1996(in Chinese).
[14] 高铁锁, 李椿萱, 董维中, 等. 高超声速电离绕流的数值模拟[J]. 空气动力学学报, 2002, 20(2):184-191. GAO T S, LI C X, DONG W Z, et al. Numerical simulation of hypersonic ionized flows[J]. Acta Aerodynamica Sinica, 2002, 20(2):184-191(in Chinese).
[15] 董维中, 高铁锁, 丁明松. 高超声速非平衡流场多个振动温度模型的数值研究[J]. 空气动力学学报, 2007, 25(1):1-6. DONG W Z, GAO T S, DING M S. Numerical studies of the multiple vibrational temperature model in hypersonic non-equilibrium flows[J]. Acta Aerodynamica Sinica, 2007, 25(1):1-6(in Chinese).
[16] 高铁锁,董维中,丁明松,等. 物理化学模型对高温流场等离子体分布的影响[J]. 空气动力学学报, 2013, 31(5):541-545. GAO T S, DONG W Z, DING M S, et al. The effects of physicochemical models on distribution of plasma in high-temperature flowfield[J]. Acta Aerodynamica Sinica, 2013, 31(5):541-545(in Chinese).
[17] 董维中. 气体模型对高超声速再入钝体气动参数计算影响的研究[J]. 空气动力学学报, 2001, 19(2):197-202. DONG W Z. Thermal and chemical model effect on the calculation of aerodynamic parameter for hypersonic reentry blunt body[J]. Acta Aerodynamica Sinica, 2001, 19(2):197-202(in Chinese).
[18] SHERCLIFF J A. A text book of magnetohydrodynamics[M]. Oxford:Pergamon Press, 1995.
[19] 陈刚, 张劲柏, 李椿萱. 磁流体流动控制中的磁场配置效率研究[J]. 力学学报, 2008, 40(6):752-759. CHEN G, ZHANG J B, LI C X. Efficiency analysis of magnetic field configuration in MHD flow control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6):752-759(in Chinese).
[20] DUNN M G, KANG S W. Theoretical and experimental studies of reentry plasmas:NASA-CR-2232[R]. Washington, D.C.:NASA, 1973.
[21] CANDLER G V, MACCORMACK R W. The computation of hypersonic ionized flows in chemical and thermal nonequilibium:AIAA-1988-0511[R]. Reston, VA:AIAA, 1988.
[22] BITYURIN V A, BOCHAROV A N. On efficiency of heat flux mitigation by the magnetic field in MHD re-entry flow:AIAA-2011-3463[R]. Reston, VA:AIAA, 2011.
/
〈 | 〉 |