直升机技术专栏

旋翼桨尖涡生成及演化机理的高精度数值研究

  • 叶舟 ,
  • 徐国华 ,
  • 史勇杰
展开
  • 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 南京 210016

收稿日期: 2016-10-13

  修回日期: 2016-12-14

  网络出版日期: 2017-02-06

基金资助

国家自然科学基金(11302103);江苏省研究生培养创新工程(KYLX15_0238);中央高校基本科研业务费专项资金

High-resolution numerical research on formation and evolution mechanism of rotor blade tip vortex

  • YE Zhou ,
  • XU Guohua ,
  • SHI Yongjie
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-10-13

  Revised date: 2016-12-14

  Online published: 2017-02-06

Supported by

National Natural Science Foundation of China (11302103);Funding of Jiangsu Innovation Program for Graduate Education (KYLX15_0238);The Fundamental Research Funds for the Central Universities

摘要

为了细致捕捉直升机旋翼桨尖涡的生成和演化过程,建立了一个基于高精度网格和高阶通量计算格式的旋翼桨尖涡计算流体力学(CFD)求解方法。在该方法中,流场求解选取旋转坐标系下的Navier-Stokes方程为控制方程;空间离散采用迎风Roe格式,并采用低耗散的5阶WENO(Weighted Essentially Non-Osciltatory)格式进行对流通量的计算;时间推进则采用双时间法,在伪时间步上使用隐式LU-SGS(Lower-Upper Symmetric Gauss-Seidel)推进格式;应用嵌套网格方法实现桨叶网格和背景网格的数据交换。应用所建立的方法对悬停状态的旋翼桨尖涡流场进行了高精度模拟,在桨叶网格上精细地捕捉到了桨尖涡的具体生成过程,在背景网格上捕捉到了更多圈数的桨尖涡尾迹,并对桨尖涡的演化机理进行了深入研究。结果表明:建立的高精度数值方法能够有效地对旋翼桨尖涡的生成和演化过程进行细致模拟;悬停状态下旋翼桨尖气流在上下表面压力梯度的作用下经历了边界层增厚、逐渐卷起形成涡核以及最终脱离桨叶形成桨尖涡的过程。

本文引用格式

叶舟 , 徐国华 , 史勇杰 . 旋翼桨尖涡生成及演化机理的高精度数值研究[J]. 航空学报, 2017 , 38(7) : 520846 -520846 . DOI: 10.7527/S1000-6893.2017.120846

Abstract

To capture the formation and evolution process of the helicopter blade tip vortex in detail, a computational fluid dynamics (CFD) method based on refined grids and a high-order interpolation scheme is presented. In this method, the Navier-Stokes equation in the rotating coordinate system is selected as the governing equation. For spatial discretization, the upwind Roe scheme together with a fifth-order WENO (Weighted Essentially Non-Oscillatory) scheme is employed to calculate the convective variables. A dual-time method is utilized for time marching, and the implicit LU-SGS (Lower-Upper Symmetric Gauss-Seidel) scheme is adopted for every pseudo time step. The information between blade grid and the background grid is exchanged by using the overset grid method. With the method developed, the tip vortex flowfield of a hovering rotor is simulated accurately, and the detailed formation process and the evolution of the blade tip vortex are captured in the blade and background grids, respectively. The formation and evolution mechanisms of the blade tip vortex are then discussed. It is demonstrated that the current high-accuracy method is effective in simulating the formation and evolution of the blade tip vortex in hover condition. The cross flow around the blade tip is firstly attached to the blade, and then the boundary layer grows due to the pressure gradient. With advancing downstream, the vortex core is gradually identifiable, and is detached from the tip blade ultimately.

参考文献

[1] HEINECK J T, YAMAUCHI G K, WADCOCK A J, et al. Application of three-component PIV to a hovering rotor wake[C]// Proceedings of the 56th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2000.
[2] MARTIN P B, LEISHMAN J G, PUGLIESE G J, et al. Stereoscopic PIV measurements in the wake of a hovering rotor[C]//Proceedings of the 56th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2000.
[3] WONG O D, KOMERATH N M. Tip vortex formation and evolution to the near wake of a rotor in forward flight[C]//Proceedings of the 57th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2001.
[4] RICHARD H, RAFFEL M. Rotor wake measurements: full-scale and model tests[C]//Proceedings of the 58th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2002.
[5] RAMASAMY M, JOHNSON B, LEISHMAN J G. Turbulent tip vortex measurements using dual-plane digital particle image velocimetry[C]//Proceedings of the 64th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2008.
[6] KINDLER K, MULLENERS K, RICHARD H, et al. A full-scale Particle Image Velocimetry investigation of "Young" rotor blade tip vortices[C]//Proceedings of the 65th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2009.
[7] DURAISAMY K, RAMASAMY M, BAEDER J D, et al. High resolution computational and experimental study of hovering rotor tip vortex formation[J]. AIAA Journal, 2007, 45(11): 2593-2602.
[8] 印智昭, 招启军, 王博. 基于高阶WENO格式的旋翼非定常涡流场数值模拟[J]. 航空学报, 2016, 37(8): 2552-2564. YIN Z Z, ZHAO Q J, WANG B. Numerical simulations for the unsteady vortex flowfield of rotors based on high-order WENO scheme[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2552-2564 (in Chinese).
[9] 龚志斌, 李杰, 张恒. 翼尖开孔吹气流动控制数值模拟研究[J]. 航空计算技术, 2015, 45(4): 21-23. GONG Z B, LI J, ZHANG H. Numerical simulation of flow control over a fixed wing with slotted tip[J]. Aeronautical Computing Technique, 2015, 45(4): 21-23 (in Chinese).
[10] 叶舟, 徐国华, 史勇杰. 直升机旋翼/尾桨/垂尾气动干扰计算研究[J]. 航空学报, 2015, 36(9): 2874-2883. YE Z, XU G H, SHI Y J. Computational research on aerodynamic characteristics of helicopter main-rotor/tail-rotor/vertical-tail interaction[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2874-2883 (in Chinese).
[11] POMIN H, WAGNER S. Navier-Stokes analysis of helicopter rotor aerodynamics in hover and forward flight[J]. Journal of Aircraft, 2002, 39(5): 813-821.
[12] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[13] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211.
[14] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order essentially non-oscillatory schemes[J]. Siam Journal on Numerical Analysis, 1987, 115(1): 200-212.
[15] BLAZEK J. Computational fluid dynamics: principles and applications[M]. 2nd ed. Oxford: Elsevier Ltd., 2007: 274-276.
[16] LUO H, BAUM J D, LOEHNER R. A fast, matrix-free implicit method for computing low Mach number flows on unstructured grids[J]. International Journal of Computational Fluid Dynamics, 2000, 14(2): 133-157.
[17] BALDWIN B, LOMAX H. Thin layer approximation and algebraic model for separated turbulent flows[C]//Proceedings of the AIAA 16th Aerospace Sciences Meeting. Reston: AIAA, 1978.
[18] CHIU I T, MEAKIN R L. On automating domain connectivity for overset grids: AIAA-1995-0854[R]. Reston: AIAA, 1995.
[19] THOMPSON J F, THAMES F C, MASTIN C W. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies[J]. Journal of Computational Physics, 1974, 15(3): 299-319.
[20] RENZONI P, D’ALASCIO A, KROLL N, et al. EROS-a common European Euler code for the analysis of the helicopter rotor flowfield[J]. Progress in Aerospace Science, 2000, 36(5): 437-485.
[21] CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover: NASA-TM-81232[R]. Washington, D.C.: NASA, 1981.
[22] TANGLER J L. Experimental investigation of the subwing tip and its vortex structure: NASA-CR-3058[R]. Washington, D.C.: NASA, 1978.

文章导航

/