大型上单翼飞机机翼三维全场变形测量方案
收稿日期: 2016-10-16
修回日期: 2016-12-07
网络出版日期: 2017-01-09
基金资助
国家自然科学基金(51675404,51421004)
3D full-field wing deformation measurement method for large high-wing airplanes
Received date: 2016-10-16
Revised date: 2016-12-07
Online published: 2017-01-09
Supported by
National Natural Science Foundation of China (51675404,51421004)
针对大型上单翼飞机在飞行过程中机翼大挠度变形检测难题,提出了大倾角相机视场下机翼的非接触三维全场变形测量方案。根据上单翼飞机结构特点,将预先标定内参数和相机外参数的共轭相机组安装于飞机垂直尾翼上,采集飞行中的机翼变形图像。首先,提出了大倾角弱相关散斑匹配方法,解决了相机在大倾斜角度状态下采集到的机翼变形弱相关图像相关性差,难以相关匹配的问题。其次,由于测量相机安装于垂直尾翼,飞行测量过程中相机会受到气流扰动产生振动,本文提出了一种相机动态校正方法,通过在机背布置预拉伸刚性不动编码标志点,实时解算基准相机的绝对外参数,进而确定共轭相机的绝对外参数,实现所有测量相机外参数的动态校正。最后,开发了机翼变形全场测量软硬件系统,搭建了缩小比例机翼模型试验台并进行了仿真测量,对系统测量精度进行了比对分析。测量结果验证了本方案的有效性、可行性,对实机测量有一定的指导意义。
魏斌 , 梁晋 , 李洁 , 任茂栋 . 大型上单翼飞机机翼三维全场变形测量方案[J]. 航空学报, 2017 , 38(7) : 120859 -120859 . DOI: 10.7527/S1000-6893.2016.120859
A non-contact vision measurement system containing heavily sloped cameras is developed to measure 3D full-field wing deformation of the large high-wing airplane during the process of flying. In order to adapt to the structure of high-wing aircraft, pre-positioning internal parameters and relative parameters cameras, as a conjugate group, be installed on the aircraft vertical tail, to collect wing deformation images during flying. Concurrent speckle matching method for overlarge inclined angle is proposed, to solve the matching failure problem, which is caused by low correlation for images collected when wings are at large angle of inclination. Since the cameras are installed at the vertical tail, and would be affected by flight vibration, a real-time inverse calculation camera position method, using fixed pre-stretched points on the top of the plane, is presented to decrease the camera positioning error. Finally, a full-field wings' deformation measurement system, contains software and hardware, is developed, and simulated on a special built scaled theoretical wing model test bench to verify the measurement accuracy of this system. The simulation results prove the efficiency and feasibility of this proposal, and it has guiding significance for real aircraft measurement.
[1] 段静波, 周洲, 王伟, 等. 大展弦比大柔性机翼载荷分布求解的一种方法[J]. 航空学报, 2016, 37(3): 799-809. DUAN J B, ZHOU Z, WANG W, et al. A method for aeroelastic load redistribution of very flexible wing with a high-aspect-ratio[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 799-809 (in Chinese).
[2] MCGOWAN A M R, WASZAK M R. NASA’s morphing project research summaries in fiscal year 2002: NASA/TM-2005-213266[R]. Washington, D.C.: NASA, 2005.
[3] JONES T W, LUNSFORD C B. Design and development of a real-time model attitude measurement system for hypersonic facilities[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
[4] BURNER A W, LOKOS W A, BARROWS D A. Aeroelastic deformation: Adaptation of wind tunnel measurement concepts to full-scale vehicle flight testing[C]//Symposium on Flow Induced Unsteady Loads and the Impact on Military Applications, 2005.
[5] KVATERNIK R G, EURE K W, JUANG J N. Exploratory studies in generalized predictive control for active gust load alleviation: NASA/TM-2006-214296[R]. Washington, D.C.: NASA, 2006.
[6] BALLMANN J, DAFNIS A, BAARS A, et al. Aero-structural dynamics experiments at high Reynolds numbers notes on numerical fluid mechanics and multidisciplinary design[C]//Summary of Flow Modulation and Fluid-Structure Interaction Findings. Berlin: Springer-Verlag, 2010: 389-424.
[7] ROY J P, LIU T S, BRITVHER C P. Extracting dynamic loads from optical deformation measurements[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006.
[8] JENTINK H W. High accuracy in-flight wing deformation measurements based on optical correlation technique[M]. Netherlands: National Aerospace Laboratory, 2010.
[9] PAN B, XIE H M, WANG Z Y. Equivalence of digital image correlation criteria for pattern matching[J]. Applied Optics, 2010, 49(28): 5501-5509.
[10] PAN B, ASUNDI A, XIE H M, et al. Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements[J]. Optics and Lasers in Engineering, 2009, 47(7-8): 865-874.
[11] 冯文灏. 近景摄影测量[M]. 武汉: 武汉大学出版社, 2004: 124-125. FENG W H. Close-range photogrammetry[M]. Wuhan: Wuhan University Press, 2004: 124-125 (in Chinese).
[12] 杨仕平, 范东明, 龙玉春.加权整体最小二乘算法的改进[J]. 大地测量与地球动力学, 2013, 33(1): 48-52. YANG S P, FAN D M, LONG Y C. An improved weighted total least squares algorithm[J]. Journal of Geodesy and Geodynamics, 2013, 33(1): 48-52 (in Chinese).
[13] 刘建伟, 梁晋, 梁新合, 等. 大尺寸工业视觉测量系统[J]. 光学精密工程, 2010,18(1): 126-134. LIU J W, LIANG J, LIANG X H, et al. Industrial vision measuring system for large dimension work-pieces[J]. Optics and Precision Engineering, 2010, 18(1): 126-134 (in Chinese).
[14] TANG Z Z, LIANG J, XIAO Z Z, et al. Large deformation measurement scheme for 3D digital image correlation method[J]. Optics and Lasers in Engineering, 2012, 50(2): 122-130.
[15] 胡浩, 梁晋, 唐正宗, 等. 大视场多相机视频测量系统的全局标定[J]. 光学精密工程, 2012, 20(2): 369-378. HU H, LIANG J, TANG Z Z, et al. Global calibration for multi-camera videogrammetric system with large-scale field-of-view[J]. Optics and Precision Engineering, 2012, 20(2): 369-378 (in Chinese).
[16] WEI B, LIANG J, LI L G, et al. Trajectory and attitude measuring scheme for launching projectiles of inflight aircraft[J]. Optik-International Journal for Light abd Electron Optics, 2016,127(10): 4185-4192.
[17] 蒋瑾, 钟伯文, 符松. 翼身体融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2016, 37(1): 278-289. JIANG J, ZHONG B W, FU S. Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 278-289 (in Chinese).
[18] 曹长强, 蔡晋生, 段焰辉. 超声速翼型气动优化设计[J]. 航空学报, 2015, 36(12): 3774-3784. CAO C Q, CAI J S, DUAN Y H. Aerodynamic design optimization of supersonic airfoils[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3774-3784 (in Chinese).
[19] 张啸迟, 万志强, 章异嬴, 等. 旋翼固定翼复合式垂直起降飞行器概念设计研究[J]. 航空学报, 2016, 37(1): 179-192. ZHANG X C, WAN Z Q, ZHANG Y Y, et al. Conceptual design of rotary wing and fixed wing compound VTOL aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 179-192 (in Chinese).
[20] 倪先平, 朱清华. 直升机总体设计思路和方法发展分析[J]. 航空学报, 2016, 37(1): 17-29. NI X P, ZHU Q H. Development of ideas and methods of helicopter general design[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 17-29 (in Chinese).
/
〈 | 〉 |