适用于参数可调结构的非定常气动力降阶建模方法
收稿日期: 2016-10-01
修回日期: 2017-01-05
网络出版日期: 2017-01-09
基金资助
国家自然科学基金优秀青年基金(11622220);西北工业大学研究生创意创新种子基金(z2016002)
Unsteady aerodynamic reduced-order modeling method for parameter changeable structure
Received date: 2016-10-01
Revised date: 2017-01-05
Online published: 2017-01-09
Supported by
National Natural Science Foundation for Excellent Young Scholar (11622220);Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (z2016002)
基于计算流体力学(CFD)的非定常气动力降阶模型(ROM)可以极大提高气动弹性分析效率,然而现有的ROM只能针对固定参数结构,即只适合于固定模态振型,这使得现有ROM在气动弹性优化设计和不确定性分析等结构变参问题中应用受限。针对该问题,在文献[20]基础上提出了一种新的适用于任意模态振型的非定常气动力建模方法。首先将待设计/分析的结构进行参数化抽样和模态分析,之后通过主成分分析(PCA)得到若干基振型,再将这些基振型线性叠加即可拟合抽样空间内任何参数下结构的前若干阶振型。当结构参数改动时,仅仅是叠加系数发生变化。算例表明,仅用很少的基振型就能达到理想的拟合精度。经典的气动力降阶方法可用于基振型坐标下的气动力降阶,进一步变换可得到适用于不同结构的ROM,这意味着,结构参数可以在抽样空间内任意调节改动,而ROM却是通用的。该方法能广泛用于气动弹性优化设计和不确定性分析工作,可提高颤振分析精度和效率。
王梓伊 , 张伟伟 . 适用于参数可调结构的非定常气动力降阶建模方法[J]. 航空学报, 2017 , 38(6) : 220829 -220829 . DOI: 10.7527/S1000-6893.2017.120829
Computational fluid dynamics (CFD) based unsteady aerodynamic reduced-order model (ROM) can make significant improvement of efficiency of transonic aeroelastic analysis. However, the existing ROM is applicable only to structures with fixed parameters, namely prescribed model shapes (ROM-PMS). When structural parameters should be altered such as structure optimization and uncertainty analysis, ROM-PMS is no longer feasible. To settle the problem, a new unsteady aerodynamic modeling method for arbitrary model shapes is developed based on Ref.[20]. Parametric sampling and modal analysis are conducted on the structure to be designed and analyzed. The basic mode shapes are then obtained through principal component analysis (PCA). Real model shapes of arbitrary structure in the sample space can be synthesized by linearly superimposing basic mode shapes with correct coefficients. The coefficients of superposition change with the alteration of structure parameters. The analysis shows that just small number of basic modes can reach desirable accuracy. Classical modeling method can be used to construct ROM in basic mode shape coordinate. The ROM applicable for various structures can be developed from ROM in basic mode coordinate, which means that structural parameters can be arbitrarily altered in the sample space, while ROM is universal. This method can be widely applied to aeroelastic optimization design and uncertainty analysis, with great improvement in computational efficiency.
[1] DOWELL E H, HALL K C. Modeling of fluid-structure interaction[J]. Annual Review of Fluid Mechanics, 2001, 33(1): 445-490.
[2] LUCIA D J, BERAN P S, SILVA W A. Reduced-order modeling: New approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1-2): 51-117.
[3] 张伟伟, 叶正寅. 基于CFD的气动力建模及其在气动弹性中的应用[J]. 力学进展, 2008, 38(1): 77-86. ZHANG W W, YE Z Y. On unsteady aerodynamic modeling based on CFD technique and its applications on aeroelastic analysis[J]. Advances in Mechanics, 2008, 38(1): 77-86 (in Chinese).
[4] 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6): 686-701. CHEN G, LI Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6): 686-701 (in Chinese).
[5] 张伟伟, 叶正寅. 操纵面对跨声速机翼气动弹性特性的影响[J]. 航空学报, 2010, 66(7): 999-1007. ZHANG W W, YE Z Y. Effect of control surface on airfoil flutter in transonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2010, 66(7): 999-1007 (in Chinese).
[6] ZHANG W W, YE Z Y. Reduced-order-model-based flutter analysis at high angle of attack[J]. Journal of Aircraft, 2007, 44(6): 2086-2089.
[7] ZHANG W W, YE Z Y. Control law design for transonic aeroservoelastic[J]. Aerospace Science and Technology, 2007, 11(2-3): 136-145.
[8] DOWELL E H, THOMAS J P, HALL K C. Transonic limit cycle oscillation analysis using reduced order aerodynamic models[J]. Journal of Fluids and Structures, 2004, 19(1): 17-27.
[9] BERAN P S, LUCIA D J, PETTIT C L. Reduced-order modeling of limit-cycle oscillation for aeroelastic systems[J]. Journal of Fluids and Structures, 2004, 19(5): 575-590.
[10] JONES D P, ROBERTS I, GAITONDE A L. Identification of limit cycles for piecewise nonlinear aeroelastic systems[J]. Journal of Fluids and Structures, 2007, 23(7): 1012-1028.
[11] ZHANG W W, WANG B B, YE Z Y, et al. Efficient method for limit cycle flutter analysis by nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5): 1019-1028.
[12] MANNARINO A, MANTEGAZZA P. Nonlinear aeroelastic reduced order modeling by recurrent neural networks[J]. Journal of Fluids and Structures, 2014, 48: 103-121.
[13] 寇家庆, 张伟伟, 叶正寅. 基于分层思路的动态非线性气动力建模方法[J]. 航空学报, 2015, 36(12): 3785-3797. KOU J Q, ZHANG W W, YE Z Y. Dynamic nonlinear aerodynamics modeling method based on layered model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3785-3797 (in Chinese).
[14] KOU J Q, ZHANG W W. An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models[J]. Aerospace Science and Technology, 2016, 49: 197-208.
[15] ZHANG W W, KOU J Q, WANG Z Y. Nonlinear aerodynamic reduced-order model for limit-cycle oscillation and flutter[J]. AIAA Journal, 2016, 54(10): 3302-3310.
[16] WANG Z C, ZHANG Z C, LEE D H, et al. Flutter analysis with structural uncertainty by using CFD-based aerodynamic ROM[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2008.
[17] SONG S F, LU Z Z, ZHANG W W, et al. Uncertainty importance measure by fast fourier transform for wing transonic flutter[J]. Journal of Aircraft, 2011, 48(2): 449-455.
[18] MARQUE S, BADCOCK K J, KHODAPARAST H H, et al. Transonic aeroelastic stability predictions under the influence of structural variability[J]. Journal of Aircraft, 2010, 47(4): 1229-1239.
[19] MARQUE S, BADCOCK K J, KHODAPARAST H H, et al. How structural model variability influences transonic aeroelastic stability[J]. Journal of Aircraft, 2012, 49(5): 1189-1199.
[20] ZHANG W W, CHEN K J, YE Z Y. Unsteady aerodynamic reduced-order modeling of an aeroelastic wing using arbitrary mode shapes[J]. Journal of Fluids and Structures, 2015, 58: 254-270.
[21] SCHAIRER E T, HAND L A. Measurements of unsteady aeroelastic model deformation by stereo photogrammetry[J]. Journal of Aircraft, 1999, 36(6): 1033-1040.
[22] GORDNIER R E. Computation of limit-cycle oscillations of a delta wing[J]. Journal of Aircraft, 2003, 40(6): 1206-1208.
/
〈 | 〉 |