流体力学与飞行力学

耦合多螺旋桨滑流影响的低雷诺数机翼设计

  • 王科雷 ,
  • 周洲 ,
  • 祝小平
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 西北工业大学 无人机特种技术重点实验室, 西安 710065

收稿日期: 2016-09-23

  修回日期: 2016-12-19

  网络出版日期: 2017-01-03

基金资助

民机专项(MIZ-2015-F-009);陕西省科技统筹(2015KTCQ01-78)

Aerodynamic design of low-Reynolds-number wing taking into account the multiple propellers induced effects

  • WANG Kelei ,
  • ZHOU Zhou ,
  • ZHU Xiaoping
Expand
  • 1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Laboratory of Science and Technology on UAV, Northwestern Polytechnical University, Xi'an 710065, China

Received date: 2016-09-23

  Revised date: 2016-12-19

  Online published: 2017-01-03

Supported by

Civil Aircraft Project (MIZ-2015-F-009);Shaanxi Province Science and Technology Project (2015KTCQ01-78)

摘要

以某型手抛式太阳能无人机(UAV)模型为对象进行考虑多螺旋桨滑流影响的低雷诺数机翼平面形状设计研究。首先,基于升力面理论发展了准定常求解多螺旋桨/机翼相互气动干扰问题的涡格法(VLM)程序,并采用建立参考翼型气动特性数据库的形式发展了相关低雷诺数修正(LRC)方法;然后,通过对翼型、低雷诺数机翼及单螺旋桨/机翼算例的数值模拟及与相关实验结果的对比,验证了本文数值方法具备模拟低雷诺数复杂流动问题的可靠性及准确性;最后,对某型手抛式太阳能无人机简化拉力多螺旋桨/机翼模型进行了直接优化设计及反设计,并通过具有较高精度的CFD准定常求解技术对优化结果进行了验证。结果表明:以CFD方法计算结果为参考,本文涡格法程序及低雷诺数修正方法能够准确高效地计算相关低雷诺数复杂流动问题;传统未考虑多螺旋桨滑流影响的设计机翼在实际螺旋桨工作状态下将偏离设计点,机翼气动特性得不到提高;考虑螺旋桨滑流影响的优化设计方法能够有效改善机翼阻力特性,相对应地,在设计状态下优化机翼总阻力能够降低19.52 counts。

本文引用格式

王科雷 , 周洲 , 祝小平 . 耦合多螺旋桨滑流影响的低雷诺数机翼设计[J]. 航空学报, 2017 , 38(6) : 120813 -120813 . DOI: 10.7527/S1000-6893.2016.120813

Abstract

Based on a certain hand-throw solar-powered unmanned aerial vehicle (UAV), the optimization design approaches for low-Reynolds-number wing coupled with multiple propellers induced effects are studied. The corresponding quasi-steady procedure based on the vortex lattice method (VLM) of lifting line theory and the low Reynolds correction (LRC) method based on the reference airfoil aerodynamic properties database are developed to simulate the multiple propellers/wing aerodynamic interference at low Reynolds numbers. The reliability and accuracy of the simplified numerical method (VLM procedure and LRC method) are testified with several cases studies and their comparison with experimental results. Both the direct optimization design and inverse design of the simplified hand-throw solar-powered UAV model in tractor configuration are conducted, and the optimization results are examined with high-accuracy CFD technique. It shows that (a) the low-Reynolds-number flow can be simulated by the VLM-LRC method efficiently and accurately; (b) the aerodynamic properties of the optimal wing cannot be improved when the propeller slipstream effect is not taken into consideration in the conventional design approach; (c) the wing drag performance can be greatly improved with the optimization approach that takes into account the multiple propeller slipstream effects, and the optimized wing has a drag reduction of 19.52 counts at the design state.

参考文献

[1] ROMEO G, FRULLA G, CESTINO E, et al. Heliplat: Design, aerodynamic, structural analysis of long-endurance solar-powered stratospheric platform[J]. Journal of Aircraft, 2004, 41(6): 1505-1520.
[2] EHAB A E, COLIN P B. Experimental investigation of the effect of propeller slipstream on boundary layer behavior at low Reynolds number[J]. AIAA-Applied Aerodynamics Conference, 2000, 194(10): 267-276.
[3] 王科雷, 周洲, 甘文彪, 等. 太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014, 32(2): 163-168. WANG K L, ZHOU Z, GAN W B, et al. Studying aerodynamic performance of the low-Reynolds-number airfoil of solar energy UAV[J]. Journal of Northwestern Polytechnical University, 2014, 32(2): 163-168 (in Chinese).
[4] GAVIN K A, ROBERT W D, MICHAEL S S. Propeller induced flow effects on wings at low Reynolds numbers: AIAA-2013-3193[R]. Reston: AIAA, 2013.
[5] KROO I. Propeller-wing integration for minimum induced loss[J]. Journal of Aircraft, 1986, 23(7): 561-565.
[6] VELDHUIS L L M, HEYMA P M. A simple wing optimization code including propeller effects[C]//21st Congress of the International Council of the Aeronautical Sciences. [S.l.]: ICAS, 1998.
[7] VELDHUIS L L M, HEYMA P M. Aerodynamic optimization of wings in multi-engined tractor propeller arrangements[J]. Aircraft Design, 2000, 3(3): 129-149.
[8] VELDHUIS L L M. Propeller/wing aerodynamic interference[D]. Delft: Delft University of Technology, 2005.
[9] RAKSHITH B R, DESHPANDE S M, RODDAM N, et al. Optimal low-drag wing planforms for tractor-configuration propeller-driven aircraft[J]. Journal of Aircraft, 2015, 52(6): 1-11.
[10] 乔宇航, 马东立, 邓小刚. 基于升力线理论的机翼几何扭转设计方法[J]. 北京航空航天大学学报, 2013, 39(3): 320-324. QIAO Y H, MA D L, DENG X G. Wing geometric twist design method based on lifting-line theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3): 320-324 (in Chinese).
[11] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计研究[J]. 航空学报, 2014, 35(11): 2910-2920. XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2910-2920 (in Chinese).
[12] 陈广强, 白鹏, 詹慧玲, 等. 高空长航时无人机螺旋桨滑流效应影响研究[J]. 飞机设计, 2014, 34(4): 1-9. CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on high altitude long endurance unmanned air vehicle (HALE UAV)[J]. Aircraft Design, 2014, 34(4): 1-9 (in Chinese).
[13] 陈广强, 白鹏, 詹慧玲, 等. 一种推进式螺旋桨无人机滑流效应影响研究[J]. 空气动力学学报, 2015, 33(4): 554-562. CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on unmanned air vehicle with propeller engine[J]. Acta Aerodynamica Sinica, 2015, 33(4): 554-562 (in Chinese).
[14] 孙美建, 詹浩. Kriging模型在机翼气动外形优化中的应用[J]. 空气动力学报, 2011, 29(6): 759-764. SUN M J, ZHAN H. Application of Kriging surrogate model for aerodynamic shape optimization of wing[J]. Acta Aerodynamica Sinca, 2011, 29(6): 759-764 (in Chinese).
[15] 穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究[J]. 计算力学学报, 2005, 22(5): 608-612. MU X F, YAO W X, YU X Q, et al. A survey of surrogate models used in MDO[J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 608-612 (in Chinese).
[16] ESMAEEL E, MEHRAN T, SAMAN N. Aerodynamic performance of Parastoo UAV[J]. Aircraft Engineering and Aerospace Technology: An International Journal, 2013, 85(2): 97-103.
[17] 甘文彪, 周洲, 许晓平. 仿生全翼式太阳能无人机气动数值模拟[J]. 航空学报, 2015, 36(10): 3284-3294. GAN W B, ZHOU Z, XU X P. Aerodynamic numerical simulation of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3284-3294 (in Chinese).
[18] 甘文彪, 周洲, 许晓平. 仿生全翼式太阳能无人机分层协同设计及分析[J]. 航空学报, 2016, 37(1): 163-178. GAN W B, ZHOU Z, XU X P. Multilevel collaboration design and analysis of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 163-178 (in Chinese).
[19] MICHAEL D P, BRIAN J G. Wing aerodynamic analysis incorporating one-way interaction with distributed propellers: AIAA-2014-2852[R]. Reston: AIAA, 2014.
[20] RANGWALLA A A, WILSON L N. Application of a panel code to unsteady wing-propeller interference[J]. Journal of Aircraft, 1987, 24(8): 568-571.
[21] 迟永一. 基于CFD方法的轻型公务机雷诺数修正研究[J]. 黑龙江科技信息, 2014(17): 122. CHI Y Y. A study of CFD-based Reynolds correction for light business jets[J]. Heilongjiang Science and Technology Information, 2014(17): 122 (in Chinese).
[22] 张辉, 李杰, 龚志斌. 某运输机全机构型雷诺数效应阻力修正研究[J]. 飞行力学, 2012, 30(1): 20-24. ZHANG H, LI J, GONG Z B. Drag correction to higher Reynolds number for a transport aircraft[J]. Flight Dynamics, 2012, 30(1): 20-24 (in Chinese).
[23] 王巍, 李东升, 刘春. 基于小扰动理论的桨叶叶素气动载荷计算方法[J]. 北京航空航天大学学报, 2016, 42(2): 294-302. WANG W, LI D S, LIU C. Calculation method of blade element aerodynamic loads based on small perturbation theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2): 294-302 (in Chinese).
[24] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flows[J]. Journal of Fluids Engineering, 2008, 130(1): 1-14.
[25] WALTERS D K, LEYLEK J H. Impact of film-cooling jets on turbine aerodynamic losses[J]. Journal of Turbomachinery, 2000, 122(3): 537-545.
[26] VOLINO R J. A new model for free-stream turbulence effects on boundary layers[J]. Journal of Turbomachinery, 1998(120): 613-620.
[27] HSIAO F B, LIU C F, TANG Z. Experimental studies of airfoil performance and flow structures on a low Reynolds number airfoil[C]//19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference, Honolulu, 1987.
[28] ABTAHI A A, MARCHMAN J F. Aerodynamics of an aspect ratio 8 wing at low Reynolds number[J]. AIAA Journal, 1985, 22(7): 628-634.
[29] 张家树, 杨恬. 三次B样条曲线的快速生成算法[J]. 西南师范大学学报(自然科学版), 1997, 22(6): 644-647. ZHANG J S, YANG T. A fast generating algorithm of gubic B-spline curve[J]. Journal of Southwest China Normal University (Natural Science), 1997, 22(6): 644-647 (in Chinese).
[30] 荣焕宗, 张伟荣, 张蔚. 带有面积约束的B样条曲线拟合方法[J]. 应用数学与计算数学学报, 1990, 4(2): 19-25. RONG H Z, ZHANG W R, ZHANG W. B-spline curve fitting method with an area constraint[J]. Communication on Applied Mathematics and Computation, 1990, 4(2): 19-25 (in Chinese).
[31] 王小平, 曹立明. 遗传算法-理论、应用与软件实现[M]. 西安: 西安交通大学出版社, 2002. WANG X P, CAO L M. Genetic algorithm-theory, application and realization[M]. Xi'an: Xi'an Jiaotong University Press, 2002 (in Chinese).
[32] 谭艳艳. 几种改进的分解类多目标进化算法及其应用[D]. 西安: 西安电子科技大学, 2013. TAN Y Y. Several modified decomposition-based multi-objective evolutionary algorithms and their applications[D]. Xi'an: Xidian Univeristy, 2013 (in Chinese).

文章导航

/