流体力学与飞行力学

压缩拐角激波与旁路转捩边界层干扰数值研究

  • 童福林 ,
  • 唐志共 ,
  • 李新亮 ,
  • 吴晓军 ,
  • 朱兴坤
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 中国科学院 力学研究所 高温气体动力学国家重点实验室, 北京 100190
童福林,男,博士研究生,助理研究员。主要研究方向:可压缩湍流直接数值模拟,高超声速气动热和热防护。Tel.:0816-2463133,E-mail:wowo2020@sohu.com;唐志共,男,博士,研究员,博士生导师。主要研究方向:高超声速空气动力学。Tel.:0816-2463133,E-mail:515363491@qq.com

收稿日期: 2016-01-13

  修回日期: 2016-03-17

  网络出版日期: 2017-01-03

基金资助

国家自然科学基金(91441103,11372330,11472278)

Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp

  • TONG Fulin ,
  • TANG Zhigong ,
  • LI Xinliang ,
  • WU Xiaojun ,
  • ZHU Xingkun
Expand
  • 1. Computational Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2016-01-13

  Revised date: 2016-03-17

  Online published: 2017-01-03

Supported by

National Natural Science Foundation of China (91441103, 11372330, 11472278)

摘要

为了研究激波与旁路转捩边界层的干扰机理,采用直接数值模拟(DNS)方法对来流马赫数Ma=2.9,24°压缩拐角内激波与转捩边界层的相互作用进行了系统的研究。考察了旁路转捩干扰下压缩拐角内分离区形态和激波波系结构的典型特征。比较了转捩干扰与湍流干扰流动结构的差异,并分析了造成差异的原因。研究了拐角内转捩边界层的演化特性,探讨了转捩干扰下脉动峰值压力和峰值摩阻的分布规律及形成机制。研究结果表明:相较于湍流干扰,两侧发卡涡串的展向挤压使得分离区起始点以V字型分布,且分离激波沿展向以破碎状态为主,激波脚呈现多层结构;拐角内的干扰作用急剧加速了边界层的转捩过程;转捩干扰下的拐角内峰值脉动压力以单峰结构出现在分离区的下游,同时干扰区内的强湍动能和高雷诺剪切应力使得其局部峰值摩阻系数要高于湍流干扰。

本文引用格式

童福林 , 唐志共 , 李新亮 , 吴晓军 , 朱兴坤 . 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016 , 37(12) : 3588 -3604 . DOI: 10.7527/S1000-6893.2016.0096

Abstract

A direct numerical simulation (DNS) of shock wave and bypass transitional boundary layer interaction for a 24° compression ramp at Mach number Ma=2.9 is conducted. The intricate flow phenomena in the ramp-corner, including separation bubble characteristics and shock wave behavior, have been studied systematically. The DNS results of transitional interaction are compared with the corresponding turbulent interaction and the reasons for the differences are analyzed. The evolution of the transitional boundary layer in the ramp is researched. The fluctuation of wall pressure and distribution of skin friction coefficient in transitional interaction are investigated in detail. Results indicate that the distribution of coherent vortex structures is non-uniform in the spanwise direction and the separation bubble is reduced to a V-shape by the mutual interactions of the hairpin vortices chains. The shock fronts are destroyed badly and even break down by the interaction. The multiple layer of shock foots is observed obviously. The interactions rapidly accelerate the evolution of transition and greatly amplify the intensity of fluctuations. The peak of wall pressure fluctuations appears with single-peak structure at the downstream of separation region. And the overshoot of skin friction induced by transitional interaction is explained by the strong Reynolds shear stress and high turbulent kinetic energy.

参考文献

[1] HOLDEN M S. Reviews of aerothermal problems associated with hypersonic flight:AIAA-1986-0267[R]. Reston:AIAA, 1986.
[2] ANDREOPOULOS J, MUCH K. Some new aspects of the shock wave/boundary layer interaction in compression ramp flows[J]. Journal of Fluid Mechanics, 1987, 180:405-428.
[3] EDWARDS J R. Numerical simulations of shock/boundary layer interactions using time dependent modeling techniques:A survey of recent results[J]. Progress in Aerospace Sciences, 2008, 44(6):447-465.
[4] KNIGHT D, LONGO J, DRIKAKIS D, et al. Assessment of CFD capability for prediction of hypersonic shock interactions[J]. Progress in Aerospace Sciences, 2012, 48-49(2):8-26.
[5] DELERY J M. Shock wave/turbulent boundary layer interaction and its control[J]. Progress in Aerospace Sciences, 1985, 22(4):209-280.
[6] CLEMENS N T, NARAYANASWAMY V. Low frequency unsteadiness of shock wave turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1):469-492.
[7] GAITONDE D V. Progress in shock wave boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99.
[8] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:what next?[J]. AIAA Journal, 2001, 39(8):1517-1530.
[9] SANDHAM N D, SCHULEIN E. Transitional shock wave/boundary layer interactions in hypersonic flow[J]. Journal of Fluid Mechanics, 2014, 752:349-382.
[10] ERDEM E, KONTIS K, JOHNSTONE E. Experiments on transitional shock wave boundary layer interactions at Mach 5[J]. Experiments in Fluids, 2013, 54(10):1598-1620.
[11] SCHRIJER F J. Experiments on hypersonic boundary layer separation and reattachment on a blunted cone flare using quantitative infrared thermograph:AIAA-2003-6967[R]. Reston:AIAA, 2003.
[12] XIE S F, GONG J, JI F. Research of flow field characteristics of hypersonic shock wave/transitional boundary layer interaction:AIAA-2015-3569[R]. Reston:AIAA, 2015.
[13] TERAMOTO S. Large eddy simulation of transitional boundary layer with impinging shock wave[J]. AIAA Journal, 2005, 43(11):2354-2363.
[14] KRISHNAN L, SANDHAM N D. Shock wave/boundary layer interactions in a model Scramjet intake[J]. AIAA Journal, 2009, 47(7):1680-1691.
[15] TOKURA Y, MAEKAWA H. DNS of a spatially evolving transitional turbulent boundary layer with impinging shock wave:AIAA-2011-0729[R]. Reston:AIAA, 2011.
[16] LUDEKE H, SANDHAM N. Direct numerical simulation of the transition process in a separated supersonic ramp flow:AIAA-2010-4470[R]. Reston:AIAA, 2010.
[17] 童福林, 李新亮, 唐志共, 等. 转捩对压缩拐角激波/边界层干扰分离泡的影响[J]. 航空学报, 2016, 37(10):2909-2921. TONG F L, LI X L, TANG Z G, et al. Transition effect on separation bubble in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2909-2921(in Chinese).
[18] RINGUETTE M J, BOOKEY P, WYCKHAM C, et al. Experimental study of a Mach 3 compression ramp interaction at Reθ=2400[J]. AIAA Journal, 2009, 47(2):373-385.
[19] BOOKEY P, WYCKHAM C. SMITS A J, et al. New experimental data of STBLI at DNS/LES accessible Reynolds numbers:AIAA-2005-0309[R]. Reston:AIAA, 2005.
[20] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.
[21] MARTIN M P, TAYLOR E M, WU M, et al. A bandwidth optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1):270-289.
[22] PIROZZOLI S, GRASSO F. GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3):530-545.
[23] GAO H, FU D X, MA Y W, et al. Direct numerical simulation of supersonic turbulent boundary layer flow[J]. Chinese Physics Letters, 2005, 22(7):1709-1712.
[24] LI X L, FU D X, MA Y W, et al, Acoustic calculation for supersonic turbulent boundary flow[J]. Chinese Physics Letters, 2009, 26(9):094701.
[25] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock wave turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China:Physics, Mechanics & Astronomy, 2010, 53(9):1651-1658.
[26] WU P P, MILES R B. Megahertz visualization of compression-corner shock structures[J]. AIAA Journal, 2001, 39(8):1542-1546.
[27] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):0802.
[28] PIROZZOLI S, BERNARDINI M. Direct numerical simulation database for Impinging shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 2011, 49(6):1307-1312.
[29] SKOTE M, HENNINGSON D S. Direct numerical simulation of a separated turbulent boundary layer[J]. Journal of Fluid Mechanics, 2002, 374(5):379-405.
[30] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large eddy simulation of shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2006, 565(1):135-169.
[31] DAWSON D M, LELE S K. Large eddy simulation of a three dimensional compression ramp shock turbulent boundary layer interaction:AIAA-2015-1518[R]. Reston:AIAA, 2015.
[32] FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall bounded flows[J]. Physics of Fluids, 2002, 14(11):L73-L76.

文章导航

/