时间谱方法中的高效GMRES算法
收稿日期: 2016-10-27
修回日期: 2016-12-04
网络出版日期: 2016-12-26
基金资助
国家自然科学基金优秀青年基金(11622220);高等学校创新引智计划(B17037)
Efficient GMRES algorithm in time spectral method
Received date: 2016-10-27
Revised date: 2016-12-04
Online published: 2016-12-26
Supported by
National Natural Science Foundation of China for Excellent Young Scholars (11622220);Programme of Introducing Talents of Discipline to Universities (B17037)
研究了时间谱方法求解周期性非定常流场的计算效率,并对时间谱方法应用于周期性非定常流动的隐式求解方法进行探讨。当采样点数增加或减缩频率增大时,时间谱方法对应的雅可比矩阵对角占优性质迅速恶化,导致很多传统的迭代方法失效。为了解决上述问题,论文采用带预处理的广义极小残差(GMRES)算法来提高雅可比系数矩阵的计算收敛性。使用时间谱方法对NACA0012翼型强迫振荡算例进行计算,并与时域差分方法的计算效率和精度进行对比。研究表明在保证计算精度的同时,时间谱方法普遍可将计算效率提高一个量级左右。对于跨声速周期性流动,广义极小残差算法不论是稳定性还是收敛性都优于对称SGS迭代算法。
关键词: 时间谱方法; 广义极小值残差(GMRES)算法; 周期性非定常流动; 预处理; 计算效率
贡伊明 , 刘战合 , 刘溢浪 , 张伟伟 . 时间谱方法中的高效GMRES算法[J]. 航空学报, 2017 , 38(7) : 120894 -120894 . DOI: 10.7527/S1000-6893.2016.120894
In this paper, the computational efficiency of the time-spectral method for solving the periodic unsteady flow field is studied, and the implicit method of time spectral method for solving the periodic unsteady flow is discussed. When the number of sampling points increases or the reduced frequency magnifies, the diagonal dominant property of the Jacobian matrix corresponding to the time spectral method deteriorates rapidly, resulting in the failure of many traditional iterative methods. In order to solve the problems above, the generalized minimum residual (GMRES) algorithm with preprocessing is used to improve the computational convergence of the Jacobian matrix. The time spectral method is used to compute the NACA0012 airfoil forced oscillation, and the computational efficiency and accuracy is compared with that of the time-domain difference method. The results show that the time spectral method can generally improve the computational efficiency an order of magnitude with saturated computational accuracy. For the transonic periodic flow, the GMRES algorithm is superior to SGS iterative algorithm both in stability and computational convergence.
[1] HALL K C, CRAWLEY E F. Calculation of unsteady flows in turbomachinery using the linearized Euler equations[J]. AIAA Journal, 1989, 27(6): 777-787.
[2] NING W, HE L. Computation of unsteady flows around oscillation blades using linear and nonlinear harmonic Euler methods[J]. Journal of Turbomachinery, 1998, 120(3): 508-514.
[3] HALL K C, THOMAS J P, CLARK W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal, 2002, 40(5): 879-886.
[4] MCMULLEN M, JAMESON A, ALONSO J J. Acceleration of convergence to a periodic steady state in turbomachinery flows: AIAA-2001-0152[R]. Reston: AIAA, 2001.
[5] MCMULLEN M, JAMESON A, ALONSO J J. Application of a nonlinear frequency domain solver to the Euler and Navier-Stokes equations: AIAA-2002-0120[R]. Reston: AIAA, 2002.
[6] DAI H H, YUE X K, YUAN J P, et al. A time domain collocation method for studying the aeroelasticity of a two dimensional airfoil with a structural nonlinearity[J]. Journal of Computational Physics, 2014, 270: 214-237.
[7] GOPINATH A K, JAMESON A. Time spectral method for periodic unsteady computations over two- and three- dimensional bodies: AIAA-2005-1220[R]. Reston: AIAA, 2005.
[8] VAN DER WEIDE E, GOPINATH A K, JAMESON A. Turbomachinery applications with the time spectral method: AIAA-2005-4905[R]. Reston: AIAA, 2005.
[9] CHOI S, POTSDAM M, LEE K, et al. Helicopter rotor design using a time-spectral and adjoint-based method: AIAA-2008-5810[R]. Reston: AIAA, 2008.
[10] GOMAR A, BONVY Q, SICOT F, et al. Convergence of Fourier-based time methods for turbomachinery wake passing problems[J]. Journal of Computational Physics, 2014, 278(C): 229-256.
[11] GOPINATH A K, JAMESON A. Application of the time spectral method to periodic unsteady vortex shedding: AIAA-2006-0449[R]. Reston: AIAA, 2006.
[12] 杨小权, 程苏堃, 杨爱明, 等. 基于时间谱方法的振荡翼型和机翼非定常黏性绕流数值模拟[J]. 航空学报, 2013, 34(4): 787-797. YANG X Q, CHENG S K, YANG A M, et al. Time spectral method for numerical simulation of unsteady viscous flow over oscillating airfoil and wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 787-797 (in Chinese).
[13] 谢立军, 杨云军, 刘周, 等. 基于时间谱方法的飞行器动导数高效计算技术[J]. 航空学报, 2015, 36(6): 2016-2026. XIE L J, YANG Y J, LIU Z, et al. A high efficient method for computing dynamic derivatives of aircraft based on time spectral method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 2016-2026 (in Chinese).
[14] 詹磊, 刘锋. 应用傅里叶时间谱方法求解二维跨音速流动问题解的精度研究[J]. 航空工程进展, 2015, 6(4): 395-404. ZHAN L, LIU F.Study on accuracy of the solutions using the Fourier time spectral method for two-dimensional transonic flows[J]. Advances in Aeronautical Science and Engineering, 2015, 6(4): 395-404 (in Chinese).
[15] JAMESON A, SHANKARAN S. An assessment of dual-time stepping, time spectral and artificial compressibility based numerical algorithms for unsteady flow with applications to flapping wings[C]//19th AIAA Computational Fluid Dynamics. Reston: AIAA, 2009.
[16] MAVRIPLIS D J, YANG Z. Time spectral method for periodic and quasi-periodic unsteady computations on unstructured meshes[J]. Mathematical Modelling of Natural Phenomena, 2011, 6(3): 213-236.
[17] SAAD Y, SCHULTZ M H. GMRES: A generalized minimal residual algorithm for solvingnonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869.
[18] JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7): 929-935.
[19] 李春娜, 叶正寅, 王刚. 基于二维非结构网格的GMRES隐式算法[J]. 西北工业大学学报, 2007, 25(5): 630-635. LI C N, YE Z Y, WANG G.GMRES implicit algorithm based on 2D unstructured meshes for solving Euler equations[J]. Journal of Northwestern Polytechnical University, 2007, 25(5): 630-635 (in Chinese).
[20] 刘巍, 张理论, 王勇献, 等. 计算空气动力学并行编程基础[M]. 北京: 国防工业出版社, 2013. LIU W, ZHANG L L, WANG Y X,et al. Computational aerodynamics parallel programming basis[M]. Beijing: National Defence Industry Press, 2013 (in Chinese).
[21] LANDON R H. NACA0012 oscillatory and transient pitching: AGARD-R-702 [R]. Paris: AGARD, 1982.
/
〈 | 〉 |