流体力学与飞行力学

多孔渗透结构影响尾缘噪声的试验

  • 刘汉儒 ,
  • 陈南树
展开
  • 西北工业大学 动力与能源学院, 西安 710072

收稿日期: 2016-09-05

  修回日期: 2016-12-02

  网络出版日期: 2016-12-21

基金资助

国家自然科学基金(51506179);中央高校基本科研业务费专项资金(3102016ZY018)

Test on effects of porous permeable section on trailing edge noise

  • LIU Hanru ,
  • CHEN Nanshu
Expand
  • School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-09-05

  Revised date: 2016-12-02

  Online published: 2016-12-21

Supported by

National Natural Science Foundation of China (51506179);the Fundamental Research Funds for the Central Universities (3102016ZY018)

摘要

本文设计了一种尾缘(TE)上游多孔渗透结构,通过在全消声低速射流风洞,利用远场麦克风测量研究了不同工况和材料物性下尾缘辐射噪声的影响。结果表明:所设计的多孔渗透结构产生了额外的方腔噪声特征,相对密度4.7%的泡沫金属所产生的附加噪声最小,颗粒状多孔材料比泡沫金属产生的附加噪声小。对称流动条件下多孔平板尾缘噪声中出现的方腔单音噪声特征,在人工非对称流动条件干涉下消失,表明压差推动渗流穿过表面是这种设计的关键。缩小人工非对称流动与非对称曲面翼型产生的压力条件之间的差异以及避免过大面积多孔设计是改进的方向。

本文引用格式

刘汉儒 , 陈南树 . 多孔渗透结构影响尾缘噪声的试验[J]. 航空学报, 2017 , 38(6) : 120746 -120746 . DOI: 10.7527/S1000-6893.2016.120746

Abstract

A novel porous permeable section of the trailing edge (TE) is designed and tested in acoustics wind tunnel using far-field microphone to investigate the effects of various flow conditions and material properties on the TE noise. The results show that the current porous permeable section causes extra cavity noise component. The 4.7% relative density of metal foam causes the minimum extra noise, and the granular porous materials produces less extra noise than that of metal foam. Under the symmetrical flow condition, the TE noise of porous flat plate contains the cavity tonal component which disappears under the artificial nonsymmetrical flow condition. It indicates that the pressure difference pushing the airflow pass through the porous surface is crucial for the design of the porous section. It is found that reducing the discrepancy of pressure distribution between artificial nonsymmetrical flow and practical nonsymmetrical airfoil, as well as reducing the excessive porous area, should be focused on during the design of porous section for TE noise reduction.

参考文献

[1] GRUBER M. Airfoil noise reduction by edge treatments[D]. Southampton: University of Southampton, 2012.
[2] HOWE M S. Aerodynamic noise of a serrated trailing edge[J]. Journal of Fluids and Structures, 1991, 5(1): 33-45.
[3] HOWE M S. Noise produced by a sawtooth trailing edge[J]. Journal of the Acoustical Society of America, 1991, 90(1): 482-487.
[4] 任露泉, 孙少明, 徐成宇. 鸮翼前缘非光滑形态消声降噪机理[J]. 吉林大学学报, 2009, 38(S1): 126-131. REN L Q, SUN S M, XU C Y. Noise reduction mechanism of non-smooth leading edge of owl wing[J]. Jounral of Jilin University, 2009, 38(S1): 126-131 (in Chinese).
[5] GRUBER M, AZARPEYVAND M, JOSEPH P F. Airfoil trailing edge noise reduction by the introduction of sawtooth and slitted trailing edge geometries[C]//Proceeding of 20th International Congress on Acoustics. New York: Acoustical Society of America, 2010: 23-27.
[6] 宫武旗, 王芳, 田镇龙, 等. 叶片锯齿尾缘对降低空调室外机气动噪声影响的试验研究[J]. 工程热物理学报, 2011, 32(10): 1681-1684. GONG W Q, WANG F, TIAN Z L, et al. Experimental study of the effect of serrated blade trailing edge on axial fan noise reduction in an outdoor air conditioner[J]. Journal of Engineering Thermophysics, 2011, 32(10): 1681-1684 (in Chinese).
[7] MOREAU D J, DOOLAN C J. Noise reduction mechanism of a flat-plate serrated trailing edge[J]. AIAA Journal, 2013, 51(10): 2513-2522.
[8] LIU X, AZARPEYVAND M, THEUNISSEN R. Aerodynamic and aeroacoustic performance of serrated airfoils: AIAA-2015-2201[R]. Reston: AIAA, 2015.
[9] CHONG T P, VATHYLAKIS A. On the aeroacoustic and flow structures developed on a flat plate with a serrated sawtooth trailing edge[J]. Journal of Sound and Vibration, 2015, 354(10): 65-90.
[10] 仝帆, 乔渭阳,王良锋, 等. 仿生学翼型尾缘锯齿降噪机理[J]. 航空学报, 2015, 36(9): 2911-2922. TONG F, QIAO W Y, WANG L F, et al. Noise reduction mechanism of bionic airfoil trailing edge serrations[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2911-2922 (in Chinese).
[11] 陈伟杰, 乔渭阳, 仝帆, 等. 尾缘锯齿结构对叶片边界层不稳定噪声的影响[J]. 航空学报, 2016, 37(11): 3317-3327. CHEN W J, QIAO W Y, TONG F, et al. Blade boundary layer instability noise with trailing edge serrations[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3317-3327 (in Chinese).
[12] 许影博, 李晓东, 何敬玉. 刷毛翼型尾缘噪声控制试验研究[J]. 南京航空航天大学学报, 2011, 43(5): 612-616. XU Y B, LI X D, HE J Y. Experiment on noise control of trailing edge brushes[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43(5): 612-616 (in Chinese).
[13] FINEZ A, JONDEAU E, ROGER M, et al. Broadband noise reduction with trailing edge brushes: AIAA-2010-3980[R]. Reston: AIAA, 2010.
[14] LI Y, WANG X N, ZHANG D J. Control strategies for aircraft airframe noise reduction[J]. Chinese Journal of Aeronautics, 2013, 26(2): 249-260.
[15] HOWE M S. On the added mass of a perforated shell, with application to the generation of aerodynamic sound by a perforated trailing edge[J]. Proceedings of the Royal Society A, 1979, 365(1721): 209-233.
[16] FINK M, BAILEY D. Model tests of airframe noise reduction concepts: AIAA-1980-0979[R]. Reston: AIAA, 1980.
[17] GEYER T, SARRADJ E,FRITZSCHE C. Measurement of the noise generation at the trailing edge of porous airfoils[J]. Experiments in Fluids, 2010, 48(2): 291-308.
[18] GEYER T, SARRADJ E. Trailing edge noise of partially porous airfoils: AIAA-2014-3039[R]. Reston: AIAA, 2014.
[19] CLARK I A, ALEXANDER W N, DEVENPORT W, et al. Bio-inspired trailing edge noise control: AIAA-2015-2365[R]. Reston: AIAA, 2015.
[20] AFSHARI A, AZARPEYVAND M, DEHGHAN A A. Trailing edge noise reduction using novel surface treatments: AIAA-2016-2834[R]. Reston: AIAA, 2016.
[21] CHONG T P, JOSEPH P F, DAVIES P O A L. Design and performance of an open jet wind tunnel for aero-acoustic measurement[J]. Applied Acoustics, 2009, 70(4): 605-614.
[22] ROGER M, SCHRAM C, SANTANA L D. Reduction of airfoil turbulence-impingement noise by means of leading-Edge serrations and/or porous materials: AIAA-2013-2108[R]. Reston: AIAA, 2013.
[23] BROOKS T F, POPE D S, MARCOLINI M A. Airfoil self-noise and prediction[M]. Washington, D.C.: NASA, 1989.
[24] ROSSITER J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds: 64037[R]. Delft: Royal Aircraft Establishment, 1964.
[25] ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94.
[26] VAFAI K, KIM S. On the limitations of the Brinkman-Forchheimer-extended Darcy equation[J]. International Journal of Heat and Fluid Flow, 1995, 16(1): 11-15.
[27] CALMIDI V V, MAHAJAN R L. The effective thermal conductivity of high porosity fibrous metal foams[J]. Journal of Heat Transfer, 1999, 121(2): 466-471.
[28] CALMIDI V V, MAHAJAN R L. Forced convection in high porosity metal foams[J]. Journal of Heat Transfer, 2000, 122(3): 557-565.
[29] BAE Y, JEONG Y E, MOON Y J. Computation of flow past a flat plate with porous trailing edge using a penalization method[J]. Computers and Fluids, 2012, 66(11): 39-51.
[30] HERR M, REICHENBERGER J. In search of airworthy trailing-edge noise reduction means: AIAA-2011-2780[R]. Reston: AIAA, 2011.

文章导航

/